Voir la notice de l'article provenant de la source International Scientific Research Publications
Harjani, Jackie 1 ; López, Belén 1 ; Sadarangani, Kishin 1
@article{JNSA_2013_6_4_a4, author = {Harjani, Jackie and L\'opez, Bel\'en and Sadarangani, Kishin}, title = {Fixed point theorems for cyclic weak contractions in compact metric spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {279-284}, publisher = {mathdoc}, volume = {6}, number = {4}, year = {2013}, doi = {10.22436/jnsa.006.04.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.05/} }
TY - JOUR AU - Harjani, Jackie AU - López, Belén AU - Sadarangani, Kishin TI - Fixed point theorems for cyclic weak contractions in compact metric spaces JO - Journal of nonlinear sciences and its applications PY - 2013 SP - 279 EP - 284 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.05/ DO - 10.22436/jnsa.006.04.05 LA - en ID - JNSA_2013_6_4_a4 ER -
%0 Journal Article %A Harjani, Jackie %A López, Belén %A Sadarangani, Kishin %T Fixed point theorems for cyclic weak contractions in compact metric spaces %J Journal of nonlinear sciences and its applications %D 2013 %P 279-284 %V 6 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.05/ %R 10.22436/jnsa.006.04.05 %G en %F JNSA_2013_6_4_a4
Harjani, Jackie; López, Belén; Sadarangani, Kishin. Fixed point theorems for cyclic weak contractions in compact metric spaces. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 4, p. 279-284. doi : 10.22436/jnsa.006.04.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.05/
[1] Principle of weakly contractive maps in Hilbert space, in: I. Gohberg, Yu. Lyubich (Eds), New Results in Operator Theory, Advances and Appl., Birkhauser. Verlag, Volume 98 (1997), pp. 7-22
[2] Uniqueness of positive solutions for a class of fourth-order boundary value problems, Abs. Appl. Anal., Article ID 543035, Volume 2011 (2011), pp. 1-13
[3] Fixed point theory for cyclic weak \(\varphi\)-contraction, Appl. Math. Lett., Volume 24 (2011), pp. 822-825
[4] Fixed point theory for cyclic \(\varphi\)-contractions, Nonlinear Anal., Volume 72 (2010), pp. 1181-1187
[5] Some theorems on weakly contractive maps , Nonlinear Anal., Volume 47 (2001), pp. 2683-2693
Cité par Sources :