On double fuzzy preuniformity
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 4, p. 263-278.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this study, we introduce the notion of double fuzzy uniform space as a view point of the entourage approach in a strictly two-sided commutative quantale based on powersets of the form $L^{X\times X}$. We investigate the relations between double fuzzy preuniformity, double fuzzy topology, double fuzzy interior operator, and double fuzzy preproximity.
DOI : 10.22436/jnsa.006.04.04
Classification : 54A05, 54A40, 54E15
Keywords: Double fuzzy topology, double fuzzy interior operator, proximity, uniformity.

Çetkin, Vildan 1 ; Aygün, Halis 1

1 Department of Mathematics, Kocaeli University, Umuttepe Campus, 41380, Kocaeli, Turkey
@article{JNSA_2013_6_4_a3,
     author = {\c{C}etkin, Vildan and Ayg\"un, Halis},
     title = {On double fuzzy preuniformity},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {263-278},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2013},
     doi = {10.22436/jnsa.006.04.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.04/}
}
TY  - JOUR
AU  - Çetkin, Vildan
AU  - Aygün, Halis
TI  - On double fuzzy preuniformity
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 263
EP  - 278
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.04/
DO  - 10.22436/jnsa.006.04.04
LA  - en
ID  - JNSA_2013_6_4_a3
ER  - 
%0 Journal Article
%A Çetkin, Vildan
%A Aygün, Halis
%T On double fuzzy preuniformity
%J Journal of nonlinear sciences and its applications
%D 2013
%P 263-278
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.04/
%R 10.22436/jnsa.006.04.04
%G en
%F JNSA_2013_6_4_a3
Çetkin, Vildan; Aygün, Halis. On double fuzzy preuniformity. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 4, p. 263-278. doi : 10.22436/jnsa.006.04.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.04/

[1] Alimohammady, M.; Ekici, E.; Jafari, S.; M. Roohi Fuzzy minimal separation axioms, J. Nonlinear Sci. Appl., Volume 3 (2010), pp. 157-163

[2] K. Atanassov Intuitionistic fuzzy sets, Fuzzy Sets and Systems, Volume 20(1) (1986), pp. 87-96

[3] C. L. Chang Fuzzy topological spaces, J. Math. Anal. Appl., Volume 24 (1968), pp. 182-190

[4] Çetkin, V.; Aygün, H. On (L;M)-fuzzy interior spaces, Advances in Theoretical and Applied Mathematics, Volume 5 (2010), pp. 177-195

[5] Çetkin, V.; Aygün, H. Lattice valued double fuzzy preproximity spaces, Computers and Mathematics with Applications, Volume 60 (2010), pp. 849-864

[6] Çoker, D. An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces, J. Fuzzy Math., Volume 4 (1996), pp. 749-764

[7] Çoker, D.; Demirci, M. An introduction to intuitionistic fuzzy topological spaces in Šostak's sense , Busefal, Volume 67 (1996), pp. 67-76

[8] Garcia, J. Gutierrez; S. E. Rodabaugh Order-theoretic, topological, categorical redundancides of interval-valued sets, grey sets, vague sets, interval-valued ''intuitionistic'' sets, ''intuitionistic'' fuzzy sets and topologies, Fuzzy Sets and Systems, Volume 156 (2005), pp. 445-484

[9] Garcia, J. Gutierrez; Perez, I. Mardones; Burton, M. H. The relationship between various filter notions on a GL-monoid, J.Math. Anal. Appl., Volume 230 (1999), pp. 291-302

[10] Garcia, J. Gutierrez; Vicente, M. A. de Prada; Šostak, A. P. A unified approach to the concept of fuzzy L-uniform spaces, Chapter in [24], pp. 81-114

[11] Goguen, J. A. The fuzzy Tychonoff theorem , J. Math. Anal. Appl., Volume 43 (1973), pp. 734-742

[12] I. M. Hanafy \(\beta S^*\)-compactness in L-fuzzy topological spaces, J. Nonlinear Sci. Appl., Volume 2 (2009), pp. 27-37

[13] Höhle, U. Upper semicontinuous fuzzy sets and applications , J. Math. Anal. Appl., Volume 78 (1980), pp. 659-673

[14] Höhle, U.; Klement, E. P. Non-Classical logic and their applications to fuzzy subsets, Kluwer Academic Publisher, Dordrecht, 1995

[15] U. Höhle Probabilistic uniformization of fuzzy uniformities, Fuzzy Sets and Systems, Volume 1 (1978), pp. 311-332

[16] Höhle, U. Many valued topology and its applications , Kluwer Academic Publisher, Boston, 2001

[17] B. Hutton Uniformities on fuzzy topological spaces , J.Math.Anal.Appl. , Volume 58 (1977), pp. 559-571

[18] U. M. Abdel-Hamied Hussein On fuzzy topolgical spaces, Ph.D thesis, Beni-Suef Univ. Egypt, 2006

[19] A. K. Katsaras Fuzzy quasi-proximities and fuzzy quasi-uniformities, Fuzzy Sets and Syst. , Volume 27 (1988), pp. 335-343

[20] Kim, Y. C.; Kim, Y. S. (\(L,\odot\))-approximation spaces and (\(L,\odot\))-fuzzy quasi-uniform spaces, Information Sciences , Volume 179 (2009), pp. 2028-2048

[21] W. Kotze Uniform spaces, Mathematics of fuzzy sets, logic, topology and measure theory , The handbooks of fuzzy sets series vol 3, Kluwer Academic Publishers, Dordrecht, 1999

[22] Kubiak, T. On fuzzy topologies, Ph.D thesis, A. Mickiewicz, Poznan, 1985

[23] Liu, Y. M.; Luo, M. K. Fuzzy topology, World Scientific Publishing, Singapore, 1997

[24] Lowen, R. Fuzzy uniform spaces, J. Math. Anal. Appl., Volume 82 (1981), pp. 370-385

[25] Ramadan, A. A.; Kim, Y. C.; El-Gayyar, M. K. On fuzzy uniform spaces, J. Fuzzy Math., Volume 11 (2003), pp. 279-299

[26] Rodabaugh, S. E.; Klement, E. P. Topological and algebraic structures, in: fuzzy sets, The handbook of recent developments in the mathematics of fuzzy Sets, Trends in logic 20, Kluwer Academic Publishers, Boston, 2003

[27] Samanta, S. K.; T. K. Mondal Intuitionistic gradation of openness: intuitionistic fuzzy topology, Busefal, Volume 73 (1997), pp. 8-17

[28] Samanta, S. K.; T. K. Mondal On intuitionistic gradation of openness, Fuzzy Sets and Systems, Volume 131 (2002), pp. 323-336

[29] S. K. Samanta Fuzzy proximities and fuzzy uniformities, Fuzzy Sets and Systems, Volume 70 (1995), pp. 97-105

[30] Šostak, A. P. On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palermo ser. II , Volume 11 (1985), pp. 89-102

Cité par Sources :