Exponential growth of solutions with $L_p$-norm of a nonlinear viscoelastic hyperbolic equation
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 4, p. 252-262.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this work, we consider a viscoelastic wave equation, with strong damping, nonlinear damping and source terms, with initial and Dirichlet boundary conditions. We will show the exponential growth of solutions with $L_p$- norm if $2 \leq m p$.
DOI : 10.22436/jnsa.006.04.03
Classification : 35L05, 35L20, 58G16
Keywords: Nonlinear damping, strong damping, viscoelasticity, nonlinear source, exponential growth.

Zennir, Khaled 1

1 Departement of Mathematics, Faculty of Sciences, University of Djillali Liabes, Sidi Bel Abbes, Algeria
@article{JNSA_2013_6_4_a2,
     author = {Zennir, Khaled},
     title = {Exponential growth of solutions with {\(L_p\)-norm} of a nonlinear viscoelastic hyperbolic equation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {252-262},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2013},
     doi = {10.22436/jnsa.006.04.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.03/}
}
TY  - JOUR
AU  - Zennir, Khaled
TI  - Exponential growth of solutions with \(L_p\)-norm of a nonlinear viscoelastic hyperbolic equation
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 252
EP  - 262
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.03/
DO  - 10.22436/jnsa.006.04.03
LA  - en
ID  - JNSA_2013_6_4_a2
ER  - 
%0 Journal Article
%A Zennir, Khaled
%T Exponential growth of solutions with \(L_p\)-norm of a nonlinear viscoelastic hyperbolic equation
%J Journal of nonlinear sciences and its applications
%D 2013
%P 252-262
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.03/
%R 10.22436/jnsa.006.04.03
%G en
%F JNSA_2013_6_4_a2
Zennir, Khaled. Exponential growth of solutions with \(L_p\)-norm of a nonlinear viscoelastic hyperbolic equation. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 4, p. 252-262. doi : 10.22436/jnsa.006.04.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.03/

[1] J. Ball Remarks on blow up and nonexistence theorems for nonlinear evolutions equations, Quart. J. Math. Oxford, Volume 28 (1977), pp. 473-486

[2] Berrimi, S.; S. Messaoudi Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping, Electronic journal of differential equations, Volume 88 (2004), pp. 1-10

[3] Berrimi, S.; Messaoudi, S. Existence and decay of solutions of a viscoelastic equation with a nonlinear source, Nonlinear Analysis, Volume 64 (2006), pp. 2314-2331

[4] Cavalcanti, M. M.; Calvalcanti, V. N. D.; J. A. Soriano Exponential decay for the solutions of semilinear viscoelastic wave equations with localized damping, Electronic journal of differential equations, Volume 44 (2002), pp. 1-44

[5] Cavalcanti, M. M.; Oquendo, H. P. Frictional versus viscoelastic damping in a semilinear wave equation, SIAM journal on control and optimization, Volume 42 (2003), pp. 1310-1324

[6] Cavalcanti, M. M.; Cavalcanti, D.; Ferreira, J. Existence and uniform decay for nonlinear viscoelastic equation with strong damping , Math. Meth. Appl. Sci., Volume 24 (2001), pp. 1043-1053

[7] Cavalcanti, M. M.; Cavalcanti, D.; Filho, P. J. S.; Soriano, J. A. Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping , Differential and integral equations, Volume 14 (2001), pp. 85-116

[8] Dafermos, C. M. Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal, Volume 37 (1970), pp. 297-308

[9] Gazzola, F.; M. Sequassina Global solution and finite time blow up for damped semilinear wave equation, Ann. I. H. Pointcaré-An, Volume 23 (2006), pp. 185-207

[10] Georgiev, V.; G. Todorova Existence of solution of the wave equation with nonlinear damping and source terms, Journal of differential equations, Volume 109 (1994), pp. 295-308

[11] Gerbi, S.; Said-Houari, B. Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions, Advances in Differential Equations, Volume 13 (2008), pp. 1051-1074

[12] Gerbi, S.; Said-Houari, B. Exponential decay for solutions to semilinear damped wave equation, Discrete and Continuous Dynamical Systems, , 2010

[13] Haraux, A.; Zuazua, E. Decay estimates for some semilinear damped hyperbolic problems, Arch. Rational Mech. Anal, Volume 150 (1988), pp. 191-206

[14] Hrusa, W. J.; M. Renardy A model equation for viscoelasticity with a strongly singular kernel, SIAM J. Math. Anal, Volume 19 (1988), pp. 19-28

[15] Ikehata, R. Some remarks on the wave equations with nonlinear damping and source terms, Nonlinear Analysis, Volume 27 (1996), pp. 1165-1175

[16] Kalantarov, V. K.; Ladyzhenskaya, O. A. The occurrence of collapse for quasilinear equation of parabolic and hyperbolic type, J. Soviet Math, Volume 10 (1978), pp. 53-70

[17] M. Kopackova Remarks on bounded solutions of a semilinear dissipative hyperbolic equation, Comment Math. Univ. Carolin, Volume 30 (1989), pp. 713-719

[18] Levine, H. A.; S. R. Park Global existence and global nonexistence of solutions of the Cauchy problem for nonlinear damped wave equation , J. Math. Anal. Appl, Volume 228 (1998), pp. 181-205

[19] Levine, H. A. Instability and nonexistence of global solutions of nonlinear wave equation of the form \(P_{u_{tt}} = Au + F(u)\) , Trans. Amer. Math. Sci, Volume 192 (1974), pp. 1-21

[20] Levine, H. A. Some additional remarks on the nonexistence of global solutions of nonlinear wave equation, SIAM J. Math. Anal, Volume 5 (1974), pp. 138-146

[21] Levine, H. A.; Serrin, J. A global nonexistence theorem for quasilinear evolution equation with dissipative, Arch. Rational Mech Anal, Volume 137 (1997), pp. 341-361

[22] Lions, J. L. quelques méthodes de résolution des problemes aux limites non lineaires, Dunod, Gaulthier-Villars, Paris , 1969

[23] S. Messaoudi Blow up and global existence in a nonlinear viscoelastic wave equation, Maths Nachr, Volume 260 (2003), pp. 58-66

[24] S. Messaoudi Blow up of positive-initial energy solutions of a nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl., Volume 320 (2006), pp. 902-915

[25] Messaoudi, S.; Said-Houari, B. Global nonexistence of solutions of a class of wave equations with nonlinear damping and source terms, Math. Meth. Appl. Sc, Volume 27 (2004), pp. 1687-1696

[26] Messaoudi, S.; Tatar, N-E. Global existence and asymptotic behavior for a nonlinear viscoelastic problem, Mathematical. Sciences research journal, Volume 7(4) (2003), pp. 136-149

[27] Messaoudi, S.; N-E. Tatar Global existence and uniform stability of a solutions for quasilinear viscoelastic problem, Math. Meth. Appl. Sci., Volume 30 (2007), pp. 665-680

[28] S. Messaoudi Blow up in a nonlinearly damped wave equation, Math. Nachr., Volume 231 (2001), pp. 1-7

[29] Rivera, J. E. Munoz; M.G. Naso On the decay of the energy for systems with memory and indefinite dissipation, Asymptote. anal. , Volume 49 (34) (2006), pp. 189-204

[30] Vi. Pata Exponential stability in viscoelasticity, Quarterly of applied mathematics , volume LXIV, number 3, 499-513, 2006

[31] Rivera, J. E. M.; Lapa, E. C.; Barreto, R. K. Decay rates for viscoelastic plates with memory, Journal of elasticity, Volume 44 (1996), pp. 61-87

[32] Rivera, J. E. M.; Barreto, R. K. Decay rates of solutions to thermoviscoelastic plates with memory, IMA journal of applied mathematics, Volume 60 (1998), pp. 263-283

[33] Wu, Shun-Tang; Long-Yi Tsai On global existence and blow-up of solutions or an integro-differential equation with strong damping, Taiwanese J. Math., Volume 10 (2006), pp. 979-1014

[34] G. Todorova Stable and unstable sets for the Cauchy problem for a nonlinear wave with nonlinear damping and source terms, J. Math. Anal. Appl., Volume 239 (1999), pp. 213-226

[35] E. Vittilaro Global nonexistence theorems for a class of evolution equations with dissipation, Arch. Rational Mech. Anal., Volume 149 (1999), pp. 155-182

[36] Zuazua, E. Exponential decay for the semilinear wave equation with locally distributed damping, Comm. PDE, Volume 15 (1990), pp. 205-235

Cité par Sources :