A fixed point theorem in generalized ordered metric spaces with application
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 4, p. 244-251.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we consider the concept of $\Omega$-distance on a complete, partially ordered $G$-metric space and prove a fixed point theorem for ($\psi,\phi$)-Weak contraction. Then, we present some applications in integral equations.
DOI : 10.22436/jnsa.006.04.02
Classification : 47H10, 54H25
Keywords: \(\Omega\)-distance, fixed point, G-metric space, (\(\psi, \phi\))-Weak contraction.

Gholizadeh, Leila 1

1 Department of Mathematics, Islamic Azad University (IAU)--Science and Research Branch, Tehran, Iran
@article{JNSA_2013_6_4_a1,
     author = {Gholizadeh, Leila},
     title = {A fixed point theorem  in generalized ordered metric spaces with application},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {244-251},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2013},
     doi = {10.22436/jnsa.006.04.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.02/}
}
TY  - JOUR
AU  - Gholizadeh, Leila
TI  - A fixed point theorem  in generalized ordered metric spaces with application
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 244
EP  - 251
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.02/
DO  - 10.22436/jnsa.006.04.02
LA  - en
ID  - JNSA_2013_6_4_a1
ER  - 
%0 Journal Article
%A Gholizadeh, Leila
%T A fixed point theorem  in generalized ordered metric spaces with application
%J Journal of nonlinear sciences and its applications
%D 2013
%P 244-251
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.02/
%R 10.22436/jnsa.006.04.02
%G en
%F JNSA_2013_6_4_a1
Gholizadeh, Leila. A fixed point theorem  in generalized ordered metric spaces with application. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 4, p. 244-251. doi : 10.22436/jnsa.006.04.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.02/

[1] Aage, C. T.; J. N. Salunke Fixed point for weak contractions in G- metric spaces, Applied mathematices E-Note, Volume 12 (2012), pp. 23-28

[2] Abbas, M.; Rhoades, B. Common fixed point results for non-commuting mappings without continuity in generalized metric spaces, Appl. Math. Comput. , Volume 215 (2009), pp. 262-269

[3] Agarwal, R. P.; El-Gebeily, M. A.; O'Regan, D. Generalized in partially ordered metric space, Appl. Anal , Volume 87 (2008), pp. 1-8

[4] L. B. Ćirić A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., Volume 45 (1974), pp. 267-273

[5] Ćirić, L. B. Coincidence of fixed points for maps on topological spaces, Topology Appl., Volume 154 (2007), pp. 3100-3106

[6] Ćirić, L. B.; Jsić, S. N.; Milovanović, M. M.; J. S. Ume On the steepest descent approximation method for the zeros of generalized accretive oprators,, Nonlinear Anal-TMA, Volume 69 (2008), pp. 763-769

[7] Dutta, P. N.; B. S. Choudhury A generalization of contraction principle in metric spaces , Fixed Point theory Appl., Article ID 406368. , 2008

[8] Fang, J. X.; Y. Gao Common fixed point theorems under stric contractive conditions in Menger space, Nonlinear Anal-TMA, Volume 70 (2006), pp. 184-193

[9] Bhaskar, T. Gnana; V. Lakshmikantham Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal-TMA, Volume 65 (2006), pp. 1379-1393

[10] Bhaskar, T. Gnana; Lakshmikantham, V.; J. Vasundhara Devi Monotone interative technique for functional differentialequations with retardation and anticipation, Nonlinear Anal-TMA , Volume 66 (10) (2007), p. 12237-2242

[11] Hussain, N. Common fixed point in best approximation for Banach opaerator pairs with Ciric type I-contractions, J. Math. Anal. Appl., Volume 338 (2008), pp. 1351-1363

[12] Kada, O.; Suzuki, T.; W. Takahashi Nonconvex minimization theorems and fixed point theorems in complete metric space, Math. Japonica, Volume 44 (1996), pp. 381-391

[13] Khan, M. S.; Swaleh, M.; S. Sessa Fixed point theorems by altering distances between the points, Bulletin of the Australian Mathematical Society, Volume 30 (1) (1984), pp. 1-9

[14] Mustafa, Z.; Obiedat, T.; Awawdeh, F. Some fixed point theorems for mapping on complete G-metric space, Fixed Point theory Appl., Article ID 189870. , 2008

[15] Mustafa, Z.; Sims, B. A new approach to generalized metric spaces , J. Nonlinear Convex Anal., Volume 7 (2006), pp. 289-297

[16] Mustafa, Z.; B. Sims Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point theory Appl. Article ID 917175. (2009), pp. 1-10

[17] H. K. Nashine Coupled common fixed point results in ordered G-metric spaces, J. Nonlinear Sci. Appl., Volume 1 (2012), pp. 1-13

[18] Nieto, J. J.; Rodriguez-Lopez, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order , Volume 22 (2005), pp. 223-239

[19] Nieto, J. J.; Lopez, R. R. Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. Eng. Ser., Volume 23 (2007), pp. 2205-2212

[20] O'Regan, D.; Saadati, R. Nonlinear contraction theorems in probabilistic spaces, Appl. Math. Comput. , Volume 195 (2008), pp. 86-93

[21] Petrusel, A.; Rus, L. A. Fixed point theorems in ordered L- Spaces, Proc. Amer. Math. Soc., Volume 134 (2006), pp. 411-418

[22] Popa, V.; Patriciu, A-M. A general fixed point theorem for pairs of weakly compatible mappings in G-metric spaces, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 151-160

[23] Ran, A. C. M.; M. C. B. Reurings A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., Volume 132 (2004), pp. 1435-1443

[24] Rhoades, B. E. Some theorems on weakly contractive maps , Nonlinear Anal-TMA, Volume 47 (4) (2001), pp. 2683-2693

[25] Saadati, R.; Vaezpour, S. M.; Vetro, P.; B. E. Rhoades Fixed point theorems in generalized partially ordered G-metric spaces, Math. Comput. Model. , Volume 52 (2010), pp. 797-801

[26] Shatanawi, W. Fixed point theory for contractive mappings satisfying \(\Phi\)-maps in G-metric spaces, Fixed Point theory Appl. Article ID 181650. (2010), pp. 1-9

[27] Shatanawi, W.; Nashine, H. K. A generalization of Banach's contraction principle for nonlinear contraction in a partial metric space, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 37-43

Cité par Sources :