Existence results for impulsive neutral functional integrodifferential equation with infinite delay
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 4, p. 234-243.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study the existence of mild solutions for a impulsive semilinear neutral functional integrodifferential equations with infinite delay in Banach spaces. The results are obtained by using the Hausdorff measure of noncompactness. Examples are provided to illustrate the theory. Impulsive differential equation, Neutral functional differential equation, Mild solution, Hausdorff measures of noncompactness.
DOI : 10.22436/jnsa.006.04.01
Classification : 34K30, 34K40, 47D03
Keywords: Impulsive differential equation, Neutral functional differential equation, Mild solution, Hausdorff measures of noncompactness.

Gunasekar, T. 1 ; Samuel, F. Paul 2 ; Arjunan, M. Mallika 3

1 School of Advanced Sciences, Fluid Dynamics Division, VIT University, Vellore-632 014, Tamil Nadu, India
2 Department of Mathematics and Physics, University of Eastern Africa, Baraton, Eldoret 2500--30100, Kenya
3 Department of Mathematics, C. B. M College of Arts and Science, Kovaipudur, Coimbatore-641 042, Tamil Nadu, India
@article{JNSA_2013_6_4_a0,
     author = {Gunasekar, T. and Samuel, F. Paul and Arjunan, M. Mallika},
     title = {Existence results for impulsive neutral functional integrodifferential equation with infinite delay},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {234-243},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2013},
     doi = {10.22436/jnsa.006.04.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.01/}
}
TY  - JOUR
AU  - Gunasekar, T.
AU  - Samuel, F. Paul
AU  - Arjunan, M. Mallika
TI  - Existence results for impulsive neutral functional integrodifferential equation with infinite delay
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 234
EP  - 243
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.01/
DO  - 10.22436/jnsa.006.04.01
LA  - en
ID  - JNSA_2013_6_4_a0
ER  - 
%0 Journal Article
%A Gunasekar, T.
%A Samuel, F. Paul
%A Arjunan, M. Mallika
%T Existence results for impulsive neutral functional integrodifferential equation with infinite delay
%J Journal of nonlinear sciences and its applications
%D 2013
%P 234-243
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.01/
%R 10.22436/jnsa.006.04.01
%G en
%F JNSA_2013_6_4_a0
Gunasekar, T.; Samuel, F. Paul; Arjunan, M. Mallika. Existence results for impulsive neutral functional integrodifferential equation with infinite delay. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 4, p. 234-243. doi : 10.22436/jnsa.006.04.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.01/

[1] Agarwal, R.; Meehan, M.; D. O'Regan Fixed point theory and applications, in: Cambridge Tracts in Mathematics, Cambridge University Press, New York (2001), pp. 178-179

[2] Akhmerov, R. R.; Kamenskii, M. I.; Potapov, A. S.; Rodkina, A. E.; Sadovskii, B. N. Measure of noncompactness and condensing operators, Translated from the Russian by A. Iacob, Basel; Boston, Berlin : Birkhauser, 1992

[3] Ayerbe, J. M.; Benavides, T. D.; Acedo, G. L. Measure of noncmpactness in in metric fixed point theorem, Birkhauser, Basel, 1997

[4] Baghlt, S.; M. Benchohra Perturbed functional and neutral functional evolution equations with infinite delay in Frechet spaces, Electron. J. Differ. Equ. , Volume 69 (2008), pp. 1-19

[5] Banas, J.; Goebel, K. Measure of Noncompactness in Banach Space, in: Lecture Notes in Pure and Applied Matyenath, Dekker, New York, 1980

[6] Banas, J.; El-Sayed, W. G. Measures of noncompactness and solvability of an integral equation in the class of functions of locally bounded variation, J. Math. Anal. and Appl., Volume 167 (1992), pp. 133-151

[7] Banas, J.; Martinon, A. Measure of noncmpactness in Banach sequnence spaces, Portugalie Math. , Volume 52 (1995), pp. 131-138

[8] Emmanuele, G. Measures of weak noncompactness and fixed point theorems, Bull. Math. Soc. Sci. Math. R. S. Roumanie, Volume 25 (1981), pp. 353-358

[9] Fan, Z.; Dong, Q.; G. Li Semilinear differential equations with nonlocal conditions in Banach spaces, Int. J. Nonlinear Sci., Volume 2 (2006), pp. 131-139

[10] Benchohra, M.; Henderson, J.; S. K. Ntouyas Existence results for impulsive multivalued semilinear neutral functional inclusions in Banach spaces , J. Math. Anal. Appl., Volume 263 (2001), pp. 763-780

[11] Benchohra, M.; Djebali, S.; T. Moussaoui Boundary value problems for double perturbed first order ordinary differential systems , Electron. J. Qual.Theory Differ. Equ. , Volume 11 (2006), pp. 1-10

[12] Blasi, F. S. De On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie, Volume 21 (1977), pp. 259-262

[13] Chang, Y. K.; Anguraj, A.; Arjunan, M. Mallika Existence results for impulsive neutral functional differential equations with infinite delay , Nonlinear Anal. Hybrid Syst., Volume 2 (2008), pp. 209-218

[14] Dong, Q.; Fan, Z.; G. Li Existence of solutions to nonlocal neutral functional differential and integrodifferential equations, Int. J. Nonlinear Sci., Volume 5 (2008), pp. 140-151

[15] Dong, Q. Double perburbed evolution equations with infinite delay in Banach spaces, J. Yangzhou Univ. (Natural Science Edition), Volume 11 (2008), pp. 7-11

[16] Hale, J. K.; Kato, J. Phase space for retarded equations with infinite delay, Funkcial. Ekvac., Volume 21 (1978), pp. 11-41

[17] Hernandez, E. A second-order impulsive Cauchy problem, Int. J. Math. Math. Sci., Volume 31 (2002), pp. 451-461

[18] Hernandez, E.; Henriquez, H. R. Impulsive partial neutral differential equations, Appl. Math. Lett., Volume 19 (2006), pp. 215-222

[19] Hernandez, E.; Rabello, M.; Henriaquez, H. Existence of solutions for impulsive partial neutral functional differential equations, J. Math. Anal. Appl., Volume 331 (2007), pp. 1135-1158

[20] Hernandez, E. Existence results for a class of semi-linear evolution equations, Electron. J. Differ. Equ., Volume 201 (2001), pp. 1-14

[21] Hernandez, E.; H. R. Henriquez Existence results for partial neutral functional differential equations with unbounded delay, J. Math. Anal. Appl. , Volume 221 (1998), pp. 452-475

[22] Hernandez, E.; H. R. Henriquez Existence of periodic solutions of partial neutral functional differential equations with unbounded delay , J. Math. Anal.Appl., Volume 221 (1998), pp. 499-522

[23] Hino, Y.; Murakami, S.; Naito, T. Functional-Differential Equations with Infinite Delay , in: Lecture Notes in Math., vol. 1473, Springer-Verlag, Berlin, 1991

[24] Kavitha, V.; Arjunan, M. Mallika; C. Ravichandran Existence results for impulsive sysyems with nonlocal conditions in banach spaces, J. Nonlinear Sci.Appl., Volume 2 (2011), pp. 138-151

[25] Liu, J. H. Nonlinear impulsive evolution equations, Dyn. Contin. Discrete Impuls. Syst., Volume 6 (1999), pp. 77-85

[26] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S. Theory of Impulsive Differential Equations, in: Series in Modern Appl. Math., 6 World Scientific Publ., Teaneck, NJ, 1989

[27] Arjunan, M. Mallika; Kavitha, V.; S. Selvi Existence results for impulsive differential equations with nonlocal conditions via measures of noncompactness, J. Nonlinear Sci.Appl., Volume 5 (2012), pp. 195-205

[28] Samuel, F. Paul; Balachandran, K. Existence Results for Impulsive Quasilinear Integrodifferential Equations in Banach Spaces, Vietnam J. Math., Volume 38 (2010), pp. 305-321

[29] R. Ye Existence of solutions for impulsive partial neutral functional differential equation with infinite delay, Nonlinear Anal., Volume 73 (2010), pp. 155-162

[30] Travis, C. C.; Webb, G. F. Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc., Volume 200 (1974), pp. 395-418

[31] G. F. Webb Autonomos nonlinear functional differential equations and nonlinear semigroups, J. Math. Anal. Appl. , Volume 46 (1974), pp. 1-12

[32] Rogovchenko, Y. V. Impulsive evolution systems: main results and new trends, Dyn. Contin. Discrete Impuls. Syst., Volume 3 (1997), pp. 57-88

[33] Rogovchenko, Y. V. Nonlinear impulse evolution systems and applications to population models, J. Math. Anal. Appl., Volume 207 (1997), pp. 300-315

Cité par Sources :