Common fixed point of mappings satisfying implicit contractive conditions in TVS-valued ordered cone metric spaces
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 3, p. 205-215.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Using the setting of TVS-valued ordered cone metric spaces ( order is induced by a non normal cone), common fixed point results for four mappings satisfying implicit contractive conditions are obtained. These results extend, unify and generalize several well known comparable results in the literature.
DOI : 10.22436/jnsa.006.03.06
Classification : 54H25, 47H10
Keywords: Implicit contraction, fixed point, coincidence point, common fixed point, weakly compatible mappings, metric space, dominating maps, dominated maps, ordered metric space

Nashine, Hemant Kumar 1 ; Abbas, Mujahid 2

1 Department of Mathematics, Disha Institute of Management and Technology, Raipur-492101(Chhattisgarh), India
2 Department of Mathematics, Lahore University of Management Sciences, 54792-Lahore, Pakistan
@article{JNSA_2013_6_3_a5,
     author = {Nashine, Hemant Kumar and Abbas, Mujahid},
     title = {Common fixed point of mappings satisfying implicit contractive conditions in {TVS-valued} ordered cone metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {205-215},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2013},
     doi = {10.22436/jnsa.006.03.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.06/}
}
TY  - JOUR
AU  - Nashine, Hemant Kumar
AU  - Abbas, Mujahid
TI  - Common fixed point of mappings satisfying implicit contractive conditions in TVS-valued ordered cone metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 205
EP  - 215
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.06/
DO  - 10.22436/jnsa.006.03.06
LA  - en
ID  - JNSA_2013_6_3_a5
ER  - 
%0 Journal Article
%A Nashine, Hemant Kumar
%A Abbas, Mujahid
%T Common fixed point of mappings satisfying implicit contractive conditions in TVS-valued ordered cone metric spaces
%J Journal of nonlinear sciences and its applications
%D 2013
%P 205-215
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.06/
%R 10.22436/jnsa.006.03.06
%G en
%F JNSA_2013_6_3_a5
Nashine, Hemant Kumar; Abbas, Mujahid. Common fixed point of mappings satisfying implicit contractive conditions in TVS-valued ordered cone metric spaces. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 3, p. 205-215. doi : 10.22436/jnsa.006.03.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.06/

[1] Abbas, M.; Jungck, G. Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. , Volume 341 (2008), pp. 416-420

[2] Abbas, M.; Cho, Y.J.; Nazir, T. Common fixed point theorems for four mappings in TVS-valued cone metric spaces, J. Math. Inequalities, Volume 5:2 (2011), pp. 287-299

[3] Abbas, M.; Nazir, T.; S. Radenović Common fixed point of four maps in partially ordered metric spaces, Appl. Math. Lett. , doi:10.1016/j.aml.2011.03.038. , 2011

[4] Abbas, M.; Rhoades, B. E. Fixed and periodic point results in cone metric spaces, Appl. Math. Lett. , Volume 22 (2009), pp. 511-515

[5] R. P. Agarwal Contraction, approximate contraction with an application to multi-point boundary value problems, J. Comput. Appl. Appl. Math., Volume 9 (1983), pp. 315-325

[6] Agarwal, R. P.; El-Gebeily, M. A.; O'Regan, D. Generalized contractions in partially ordered metric spaces, Applicable Anal., Volume 87 (2008), pp. 109-116

[7] Altun, I.; H. Simsek Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-17

[8] Aydi, H. Some fixed point results in ordered partial metric spaces, J. Nonlinear Sci. Appl., Volume 4:3 (2011), pp. 210-217

[9] Beg, I.; A. R. Butt Fixed point for set-valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Analysis, Volume 71 (2009), pp. 3699-3704

[10] Choudhury, B. S.; Kundu, A. On coupled generalised Banach and Kannan type contractions, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 259-270

[11] Ćirić, Lj. B.; Cakić, N.; Rajović, M.; Ume, J. S. Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory and Appl. , Volume 2008 (2008), pp. 1-11

[12] Dordevic, M.; Doric, D.; Kadelburg, Z.; Radenovic, S.; Spasic, D. Fixed point results under c-distance in tvs-cone metric spaces, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-29

[13] Du, W. S. A note on cone metric fixed point theory and its equivalence, Nonlinear Anal., Volume 72 (2010), pp. 2259-2261

[14] Huang, L. G.; Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. , Volume 332 (2007), pp. 1468-1476

[15] Ilić, D.; Rakoèević, V. Common fixed points for maps on cone metric space, J. Math. Anal. Appl., Volume 341 (2008), pp. 876-882

[16] Janković, S.; Golubović, Z.; Radenović, S. Compatible and weakly compatible mappings in cone metric spaces, Math. Comput. Modelling, doi:10.1016/j.mcm.2010.06.043. , 2010

[17] Janković, S.; Kadelburg, Z.; Radenović, S.; Rhoades, B. E. Assad-Kirk-Type Fixed Point Theorems for a Pair of Nonself Mappings on Cone Metric Spaces , Fixed Point Theory Appl. Article ID 761086, doi:10.1155/2009/761086., Volume 2009 (2009), pp. 1-16

[18] Kannan, R. Some results on fixed points, Bull. Calcutta Math. Soc., Volume 60 (1968), pp. 71-76

[19] Mukhamadiev, E. M.; Stetsenko, V. J. Fixed point principle in generalized metric space, Izvestija AN Tadzh. SSR, fiz.-mat. igeol.-chem. nauki. (in Russian)., Volume 10:4 (1969), pp. 8-19

[20] Nashine, H. K. Coupled common fixed point results in ordered G-metric spaces, J. Nonlinear Sci. Appl., Volume 1 (2012), pp. 1-13

[21] Nashine, H. K.; I. Altun Fixed point theorems for generalized weakly contractive condition in ordered metric spaces, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-20

[22] Nashine, H. K.; Altun, I. A common fixed point theorem on ordered metric spaces, Bull. Iranian Math. Soc. (2011)

[23] Nashine, H. K.; Samet, B. Fixed point results for mappings satisfying ( \(\psi,\varphi\))-weakly contractive condition in partially ordered metric spaces , Nonlinear Anal. , Volume 74 (2011), pp. 2201-2209

[24] Nashine, H. K.; Samet, B.; Vetro, C. Monotone generalized nonlinear contractions and fixed point theorems in ordered metric spaces, Math. Comput. Modelling, Volume 54 (2011), pp. 712-720

[25] Nashine, H. K.; Samet, B.; Vetro, C. Coupled coincidence points for compatible mappings satisfying mixed monotone property, J. Nonlinear Sci. Appl. , Volume 5 (2012), pp. 104-114

[26] Nashine, H. K.; Shatanawi, W. Coupled common fixed point theorems for pair of commuting mappings in partially ordered complete metric spaces, Comput. Math. Appl. , Volume 62 (2011), pp. 1984-1993

[27] Nieto, J. J.; Rodríguez-López, R. Contractive mapping theorems in partially ordered sets and applications to ordianry differential equations, Order , Volume 22 (2005), pp. 223-239

[28] Olaleru, J. O. Some generalizations of fixed point theorems in cone metric spaces, Fixed Point Theory Appl., Volume 2009 (2009), pp. 1-10

[29] Perov, A. I. The Cauchy problem for systems of ordinary differential equations, in: Approximate Methods of Solving Differential Equations, Kiev, Naukova Dumka, (in Russian) (1964), pp. 115-134

[30] Perov, A. I.; Kibenko, A. V. An approach to studying boundary value problems, Izvestija AN SSSR, Ser. Math. (in Russian). , Volume 30:2 (1966), pp. 249-264

[31] Ran, A. C. M.; Reurings, M. C. B. A fixed point thm in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., Volume 132 (2004), pp. 1435-1443

[32] O'regan, D.; A. Petrutel Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl., Volume 341:2 (2008), pp. 241-1252

[33] Rezapour, Sh.; R. Hamlbarani Some notes on the paper: cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., Volume 345 (2008), pp. 719-724

[34] B. Samet Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal., Volume 72 (2010), pp. 4508-4517

[35] Samet, B. Common fixed point theorems involving two pairs of weakly compatible mappings in K-metric spaces, Applied Mathematics Letters, Volume 24 (2011), pp. 1245-1250

[36] Shatanawi, W. Partially ordered cone metric spaces and coupled fixed point results, Computers Math. Appl., Volume 60 (2010), pp. 2508-2515

[37] W. Shatanawi Some fixed point theorems in ordered G-metric spaces and applications, Abstract and Applied Analysis, Volume 2011 (2011), pp. 1-11

[38] W. Shatanawi Some coincidence point results in cone metric spaces, Math. Comput. Mod., Volume 55 (2012), pp. 2023-2028

[39] W. Shatanawi On w-compatible mappings and common coupled coincidence point in cone metric spaces , Applied Mathematics Letters, Volume 25 (2012), pp. 925-931

[40] Shatanawi, W.; Nashine, H. K. A generalization of Banach's contraction principle for nonlinear contraction in a partial metric space, J. Nonlinear Sci. Appl., Volume 3 (2012), pp. 139-144

[41] Vandergraft, J. S. Newton's method for convex opertaors in partially ordered spaces, SIAM J. Numer. Anal., Volume 4 (1967), pp. 406-432

[42] Zabrejko, P. P. K-normed linear spaces, K-metric, Survey Collect. Math., Volume 48:4-6 (1997), pp. 825-859

Cité par Sources :