On the generalized stability of dAlembert functional equation
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 3, p. 198-204.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this article, we study the super stability problem for the functional equation:
$\Sigma _{\psi\in K_{n-1}} f(\psi (x_1,..., x_n)) = 2^{n-1} \Pi^n_{ i=1} f(x_i)$
on an Abelian group and the unknown function $f$ is ( a complex or a semi simple Banach algebra valued ).
DOI : 10.22436/jnsa.006.03.05
Classification : 39B82, 39B62, 39B52
Keywords: Stability, super stability, functional equation, functional equality, cosine functional equation.

Chahbi, Abdellatif 1 ; Bounader, Nordine 2

1 Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco
2 Department of Mathematics, Faculty of Science, University of Ibn Tofail, Kenitra, Morocco
@article{JNSA_2013_6_3_a4,
     author = {Chahbi, Abdellatif and Bounader, Nordine},
     title = {On the generalized stability of {dAlembert} functional equation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {198-204},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2013},
     doi = {10.22436/jnsa.006.03.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.05/}
}
TY  - JOUR
AU  - Chahbi, Abdellatif
AU  - Bounader, Nordine
TI  - On the generalized stability of dAlembert functional equation
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 198
EP  - 204
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.05/
DO  - 10.22436/jnsa.006.03.05
LA  - en
ID  - JNSA_2013_6_3_a4
ER  - 
%0 Journal Article
%A Chahbi, Abdellatif
%A Bounader, Nordine
%T On the generalized stability of dAlembert functional equation
%J Journal of nonlinear sciences and its applications
%D 2013
%P 198-204
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.05/
%R 10.22436/jnsa.006.03.05
%G en
%F JNSA_2013_6_3_a4
Chahbi, Abdellatif; Bounader, Nordine. On the generalized stability of dAlembert functional equation. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 3, p. 198-204. doi : 10.22436/jnsa.006.03.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.05/

[1] Badora, R.; Ger, R. On some trigonometric functional inequalities, Functional Equations- Results and Advances, Volume 12 (2002), pp. 3-15

[2] Baker, J.; Lawrence, J.; Zororzitto, F. The stability of the equation f(x+y) = f(x)f(y), Proc. Amer. Math. Soc., Volume 74 (1979), pp. 242-246

[3] Baker, J. A. The stability of the cosine equation, Proc. Amer. Math. Soc., Volume 80 (1980), pp. 411-416

[4] Elqorachie, E.; Akkouchi, M. On Hyers-Ulam stability of the generalized Cauchy and Wilson equations, Publ. Math. Debrecen, Volume 66 (2005), pp. 283-301

[5] Gavruta, P. On the stability of some functional equation, In: Stability of Mappings of Hyers- Ulam Type, Hardronic Press, Palm Harbor, FL, U.S.A. (1994), pp. 93-98

[6] Hyers, D. H. On the stability of the linear functional equatinon, Proc. Natl. Acad. Sci. USA., Volume 27 (1941), pp. 93-101

[7] Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Series Springer Optimization and Its Applications , Springer, 2011

[8] Kim, G. H. The stability of the dAlembert and Jensen type functional equations, J. Math. Anal Appl., Volume 325 (2007), pp. 237-248

[9] Kim, H. M.; Kim, G. H.; M. H. Han Superstability of approximate dAlembert , Journal of Inequalities and Applications , , 2011

[10] Nakmahschalasint, P. The stability of a cosine functional equation, KMITL Sci J., Volume 1 (2007), pp. 49-53

[11] Redouani, A.; Elqorachi, E.; Bouikhalene, B. Hyers-Ulam stability of the generalized trigonometric formulas, Article 74. , JI- PAM, , 2006

[12] Ulam, S. M. Problems in Modern Mathematics, Chap.VI, Science editions, Wiley, New York, 1964

Cité par Sources :