Voir la notice de l'article provenant de la source International Scientific Research Publications
$\Sigma _{\psi\in K_{n-1}} f(\psi (x_1,..., x_n)) = 2^{n-1} \Pi^n_{ i=1} f(x_i)$ |
Chahbi, Abdellatif 1 ; Bounader, Nordine 2
@article{JNSA_2013_6_3_a4, author = {Chahbi, Abdellatif and Bounader, Nordine}, title = {On the generalized stability of {dAlembert} functional equation}, journal = {Journal of nonlinear sciences and its applications}, pages = {198-204}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {2013}, doi = {10.22436/jnsa.006.03.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.05/} }
TY - JOUR AU - Chahbi, Abdellatif AU - Bounader, Nordine TI - On the generalized stability of dAlembert functional equation JO - Journal of nonlinear sciences and its applications PY - 2013 SP - 198 EP - 204 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.05/ DO - 10.22436/jnsa.006.03.05 LA - en ID - JNSA_2013_6_3_a4 ER -
%0 Journal Article %A Chahbi, Abdellatif %A Bounader, Nordine %T On the generalized stability of dAlembert functional equation %J Journal of nonlinear sciences and its applications %D 2013 %P 198-204 %V 6 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.05/ %R 10.22436/jnsa.006.03.05 %G en %F JNSA_2013_6_3_a4
Chahbi, Abdellatif; Bounader, Nordine. On the generalized stability of dAlembert functional equation. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 3, p. 198-204. doi : 10.22436/jnsa.006.03.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.05/
[1] On some trigonometric functional inequalities, Functional Equations- Results and Advances, Volume 12 (2002), pp. 3-15
[2] The stability of the equation f(x+y) = f(x)f(y), Proc. Amer. Math. Soc., Volume 74 (1979), pp. 242-246
[3] The stability of the cosine equation, Proc. Amer. Math. Soc., Volume 80 (1980), pp. 411-416
[4] On Hyers-Ulam stability of the generalized Cauchy and Wilson equations, Publ. Math. Debrecen, Volume 66 (2005), pp. 283-301
[5] On the stability of some functional equation, In: Stability of Mappings of Hyers- Ulam Type, Hardronic Press, Palm Harbor, FL, U.S.A. (1994), pp. 93-98
[6] On the stability of the linear functional equatinon, Proc. Natl. Acad. Sci. USA., Volume 27 (1941), pp. 93-101
[7] Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Series Springer Optimization and Its Applications , Springer, 2011
[8] The stability of the dAlembert and Jensen type functional equations, J. Math. Anal Appl., Volume 325 (2007), pp. 237-248
[9] Superstability of approximate dAlembert , Journal of Inequalities and Applications , , 2011
[10] The stability of a cosine functional equation, KMITL Sci J., Volume 1 (2007), pp. 49-53
[11] Hyers-Ulam stability of the generalized trigonometric formulas, Article 74. , JI- PAM, , 2006
[12] Problems in Modern Mathematics, Chap.VI, Science editions, Wiley, New York, 1964
Cité par Sources :