Convergence criteria of modified Noor iterations with errors for three asymptotically nonexpansive nonself-mappings
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 3, p. 181-197.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The aim of this paper, is to introduce and study the modified Noor iterative algorithm with errors for approximating common fixed points of three asymptotically nonexpansive nonself-mappings. Several strong and weak convergence results on this algorithm are established under certain conditions in a uniformly convex Banach space. The results obtained in this paper improve and generalize the recent ones announced by Khan and Hussain [S. H. Khan, N. Hussain, Comput. Math. Appl. 55 (2008), 2544-2553.], Nammanee, et. al., [K. Nammanee, M.A. Noor and S. Suantai, J. Math. Anal. Appl. 314 (2006), 320-334.], Suantai [S. Suantai, J. Math. Anal. Appl. 311 (2005), 506-517.], Cho et. al., [Y. J. Cho, H. Y. Zhou and G. Guo, Comput. Math. Appl. 47 (2004), 707-717.], Xu and Noor [B. L. Xu and M.A. Noor, J. Math. Anal. Appl. 267 (2002), 444-453.] and many others.
DOI : 10.22436/jnsa.006.03.04
Classification : 47H10, 47H09, 46B20
Keywords: Asymptotically nonexpansive nonself-mapping, weak and strong convergence, completely continuous, Opial's condition, common fixed points.

Thianwan, Tanakit  1

1 Department of Mathematics, Faculty of Science, University of Phayao, Phayao, 56000, Thailand
@article{JNSA_2013_6_3_a3,
     author = {Thianwan, Tanakit },
     title = {Convergence criteria of  modified {Noor} iterations with errors for  three asymptotically nonexpansive nonself-mappings},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {181-197},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2013},
     doi = {10.22436/jnsa.006.03.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.04/}
}
TY  - JOUR
AU  - Thianwan, Tanakit 
TI  - Convergence criteria of  modified Noor iterations with errors for  three asymptotically nonexpansive nonself-mappings
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 181
EP  - 197
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.04/
DO  - 10.22436/jnsa.006.03.04
LA  - en
ID  - JNSA_2013_6_3_a3
ER  - 
%0 Journal Article
%A Thianwan, Tanakit 
%T Convergence criteria of  modified Noor iterations with errors for  three asymptotically nonexpansive nonself-mappings
%J Journal of nonlinear sciences and its applications
%D 2013
%P 181-197
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.04/
%R 10.22436/jnsa.006.03.04
%G en
%F JNSA_2013_6_3_a3
Thianwan, Tanakit . Convergence criteria of  modified Noor iterations with errors for  three asymptotically nonexpansive nonself-mappings. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 3, p. 181-197. doi : 10.22436/jnsa.006.03.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.04/

[1] Chidume, C. E.; Ofoedu, E. U.; Zegeye, H. Strong and weak convergence theorems for asymptotically nonexpansive mappings, J. Math. Anal. Appl. , Volume 280 (2003), pp. 364-374

[2] Cho, Y. J.; Zhou, H. Y.; Guo, G. Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings, Comput. Math. Appl., Volume 47 (2004), pp. 707-717

[3] Lj. B. Ćirić Quasi-contractions in Banach spaces , Publ. Inst. Math. (Beograd) (N.S.) , Volume 21(35) (1977), pp. 41-48

[4] Ćirić, Lj. B.; J. S. Ume On the convergence of the Ishikawa iterates asso ciated with a pair of multi-valued mappings, Acta Math. Hungar. , Volume 98 (2003), pp. 1-18

[5] Davis, W. J.; P. En o Contractive projections on lp spaces, Analysis at Urbana, Vol. I (Urbana, IL, 19861987), 151161, London Math. Soc. Lecture Note Ser., 137, Cambridge Univ. Press, Cambridge, 1989

[6] Glowinski, R.; Tallec, P. L. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanic, SIAM, Philadelphia, 1989

[7] Goebel, K.; Kirk, W. A. A fixed point theorem for asymptotically nonexpansive mappings , Prof. Amer. Math. Soc. , Volume 35 (1972), pp. 171-174

[8] Haubruge, S.; Nguyen, V. H.; J. J. Strodiot Convergence analysis and applications of the GlowinskiLe Tallec splitting method for finding a zero of the sum of two maximal monotone operators, J. Optim. Theory Appl. , Volume 97 (1998), pp. 645-673

[9] Ishikawa, S. Fixed point by a new iteration, Proc. Amer. Math. Soc. , Volume 44 (1974), pp. 147-150

[10] Khan, S. H.; Hussain, N. Convergence theorems for nonself asymptotically nonexpansive mappings , Comput. Math. Appl., Volume 55 (2008), pp. 2544-2553

[11] Mann, W. R. Mean value methods in iteration, Proc. Amer. Math. Soc. , Volume 4 (1953), pp. 506-510

[12] Nammanee, K.; Noor, M. A.; Suantai, S. Convergence Criteria of Modified Noor Iterations with Errors for Asymptotically Nonexpansive Mappings, J. Math. Anal. Appl., Volume 314 (2006), pp. 320-334

[13] Nilsrakoo, W.; S. Saejung A new three-step fixed point iteration scheme for asymptotically nonexpansive mappings, J. Appl. Math. comput. , Volume 181 (2006), pp. 1026-1034

[14] Opial, Z. Weak convergence of successive approximations for nonexpansive mappins, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 591-597

[15] Osilike, M. O.; Udomene, A. Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Comput. Model., Volume 32 (2000), pp. 1181-1191

[16] S. Reich Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., Volume 67 (1979), pp. 274-276

[17] Rhoades, B. E. Fixed point iterations for certain nonlinear mappings, J. Math. Anal. Appl. , Volume 183 (1994), pp. 118-120

[18] Schu, J. Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. , Volume 158 (1991), pp. 407-413

[19] Schu, J. Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc., Volume 43 (1991), pp. 153-159

[20] Suantai, S. Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math. Anal. Appl. , Volume 311 (2005), pp. 506-517

[21] W. Takahashi Iterative methods for approximation of fixed points and their applications, J. Oper. Res. Soc. Jpn. , Volume 43 (2000), pp. 87-108

[22] Tan, K. K.; H. K. Xu Approximating fixed points of nonexpansive mapping by the Ishikawa iteration process, J. Math. Anal. Appl. , Volume 178 (1993), pp. 301-308

[23] Xu, B. L.; Noor, M. A. Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. , Volume 267 (2002), pp. 444-453

Cité par Sources :