Voir la notice de l'article provenant de la source International Scientific Research Publications
Kazmi, K. R. 1 ; Ahmad, N. 2 ; Rizvi, S. H. 1
@article{JNSA_2013_6_3_a2, author = {Kazmi, K. R. and Ahmad, N. and Rizvi, S. H.}, title = {System of implicit nonconvex variationl inequality problems {A} projection method approach}, journal = {Journal of nonlinear sciences and its applications}, pages = {170-180}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {2013}, doi = {10.22436/jnsa.006.03.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.03/} }
TY - JOUR AU - Kazmi, K. R. AU - Ahmad, N. AU - Rizvi, S. H. TI - System of implicit nonconvex variationl inequality problems A projection method approach JO - Journal of nonlinear sciences and its applications PY - 2013 SP - 170 EP - 180 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.03/ DO - 10.22436/jnsa.006.03.03 LA - en ID - JNSA_2013_6_3_a2 ER -
%0 Journal Article %A Kazmi, K. R. %A Ahmad, N. %A Rizvi, S. H. %T System of implicit nonconvex variationl inequality problems A projection method approach %J Journal of nonlinear sciences and its applications %D 2013 %P 170-180 %V 6 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.03/ %R 10.22436/jnsa.006.03.03 %G en %F JNSA_2013_6_3_a2
Kazmi, K. R.; Ahmad, N.; Rizvi, S. H. System of implicit nonconvex variationl inequality problems A projection method approach. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 3, p. 170-180. doi : 10.22436/jnsa.006.03.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.03/
[1] Iterative algorithms for new class of extended general nonconvex set-valued variational inequalities, Nonlinear Anal. TMA sereies A, Volume 73(12) (2010), pp. 3907-3923
[2] A fixed point theorem and its applications to a system of variational inequalities, Bull. Austral. Math. Soc. , Volume 59 (1999), pp. 433-442
[3] Mathematical Methods of Game Theory and Economic, North-Holland, Amsterdam, 1982
[4] Projection methods and a new system of extended general regularized nonconvex set-valued variational inequalities, J. Appl. Math. Article ID 690648 , Volume 2012 (2012), pp. 1-18
[5] Local integration of prox-regular functions in Hilbert spaces, J. Convex Anal., Volume 13 (2006), pp. 114-146
[6] Iterative schemes to solve nonconvex variational problems, J. Inequal. pure Appl. Math., Volume 28(4) (2003), pp. 1-14
[7] Systems of generalized nonlinear variational inequalities and its projection methods, Nonlinear Anal. TMA series A, Volume 69(12) (2003), pp. 4443-4451
[8] Nonsmooth Analysis and Control Theory, Springer, New York, 1998
[9] Proximal smoothness and the lower \(C^2\) property, J. Convex Anal. , Volume 2 (1-2) (1995), pp. 117-144
[10] Nested monotony for variational inequalities over product of spaces and convergence of iterative algorithms, J. Optim. Theory Appl., Volume 59 (1988), pp. 360-390
[11] Engineering and economics applications of complementarity problems, SIAM Rev. , Volume 39 (1997), pp. 669-713
[12] Viscosity approximation method for nonexpansive nonself-mapping and variational inequality, J. Nonlinear Sci. Appl., Volume 1(3) (2008), pp. 169-178
[13] System of multi-valued variational inequalities, Publ. Math. Debrecen, Volume 56 (2000), pp. 185-195
[14] An iterative algorithm based on M-proximal mappings for a generalized implicit variational inclusions in Banach spaces, J. Comput. Appl. Math. , Volume 233 (2009), pp. 361-371
[15] Iterative approximation of a unique solution of a system of variational-like inclusions in real q-uniformly smooth Banach spaces, Nonlinear Anal. TMA series A , Volume 67(3) (2007), pp. 917-929
[16] A system of generalized variational inclusion involving generalized H(.,.)-accretive mapping in real q-uniformly smooth Banach spaces, Appl. Math. Comput. , Volume 217(23) (2011), pp. 9679-9688
[17] Two step algorithm for solving regularized generalized mixed variational inequality problem, Bull. Korean Math. Soc. , Volume 47 (2010), pp. 675-685
[18] Relatively monotone variational inequalities over product sets, Oper. Res. Lett. , Volume 28 (2001), pp. 21-26
[19] Generalized fuzzy random set-valued mixed variational inclusions involving random nonlinear (\(A_\omega,\eta_\omega\))- accretive mappings in Banach spaces, J. Nonlinear Sci. Appl., Volume 3(1) (2010), pp. 63-77
[20] Projection methods for a system of nonconvex variational inequalities, Nonlinear Anal. TMA series A , Volume 71 (2009), pp. 517-520
[21] Network Economics: A Variational Inequality Approach, Kluwer Academic Publishers, Dordrecht, 1993
[22] Projection methods for nonconvex variational inequalities, Optim. Lett. , Volume 3 (2009), pp. 411-418
[23] Iterative methods for general nonconvex variational inequalities, Appl. Comput. Math., Volume 10(2) (2011), pp. 309-320
[24] New system of general nonconvex variational inequalities, Appl. Math. E-Notes, Volume 10 (2010), pp. 76-85
[25] Asymmetric variational inequalities over product of sets: Applications and iterative methods, Math. Prog. , Volume 31 (1985), pp. 206-219
[26] Prox-regular functions in variational analysis , Trans. American Math. Soc., Volume 348 (1996), pp. 1805-1838
[27] Generalized system of relaxed cocoercive variational inequalities and projection methods, J. Optim. Theory Appl., Volume 121(1) (2004), pp. 203-210
[28] Projection methods for a generalized system of nonconvex variational inequalities with different operators, Nonlinear Anal. TMA series A, Volume 73 (2010), pp. 2292-2297
Cité par Sources :