System of implicit nonconvex variationl inequality problems A projection method approach
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 3, p. 170-180.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we consider a new system of implicit nonconvex variational inequality problems in setting of prox-regular subsets of two different Hilbert spaces. Using projection method, we establish the equivalence between the system of implicit nonconvex variational inequality problems and a system of relations. Using this equivalence formulation, we suggest some iterative algorithms for finding the approximate solution of the system of implicit nonconvex variational inequality problems and its special case. Further, we establish some theorems for the existence and iterative approximation of the solutions of the system of implicit nonconvex variational inequality problems and its special case. The results presented in this paper are new and different form the previously known results for nonconvex variational inequality problems. These results also generalize, unify and improve the previously known results of this area.
DOI : 10.22436/jnsa.006.03.03
Classification : 47J10, 49J40, 90C33
Keywords: System of implicit nonconvex variational inequality problems, proxegular set, projection method, iterative algorithm.

Kazmi, K. R. 1 ; Ahmad, N. 2 ; Rizvi, S. H. 1

1 Department of Mathematics, Aligarh Muslim University, Aligarh, India
2 Department of Mathematics, Al-Jouf University, P. O. Box 2014, Skaka, Kingdom of Saudi Arabia
@article{JNSA_2013_6_3_a2,
     author = {Kazmi, K. R. and Ahmad, N. and Rizvi, S. H.},
     title = {System of implicit nonconvex variationl inequality problems {A} projection method approach},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {170-180},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2013},
     doi = {10.22436/jnsa.006.03.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.03/}
}
TY  - JOUR
AU  - Kazmi, K. R.
AU  - Ahmad, N.
AU  - Rizvi, S. H.
TI  - System of implicit nonconvex variationl inequality problems A projection method approach
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 170
EP  - 180
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.03/
DO  - 10.22436/jnsa.006.03.03
LA  - en
ID  - JNSA_2013_6_3_a2
ER  - 
%0 Journal Article
%A Kazmi, K. R.
%A Ahmad, N.
%A Rizvi, S. H.
%T System of implicit nonconvex variationl inequality problems A projection method approach
%J Journal of nonlinear sciences and its applications
%D 2013
%P 170-180
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.03/
%R 10.22436/jnsa.006.03.03
%G en
%F JNSA_2013_6_3_a2
Kazmi, K. R.; Ahmad, N.; Rizvi, S. H. System of implicit nonconvex variationl inequality problems A projection method approach. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 3, p. 170-180. doi : 10.22436/jnsa.006.03.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.03/

[1] Alimohammady, M.; Balooee, J.; Cho, Y. J.; M. Roohi Iterative algorithms for new class of extended general nonconvex set-valued variational inequalities, Nonlinear Anal. TMA sereies A, Volume 73(12) (2010), pp. 3907-3923

[2] Ansari, Q. H.; Yao, J.-C. A fixed point theorem and its applications to a system of variational inequalities, Bull. Austral. Math. Soc. , Volume 59 (1999), pp. 433-442

[3] J. P. Aubin Mathematical Methods of Game Theory and Economic, North-Holland, Amsterdam, 1982

[4] Balooee, J.; Cho, Y. J.; M. K. Kang Projection methods and a new system of extended general regularized nonconvex set-valued variational inequalities, J. Appl. Math. Article ID 690648 , Volume 2012 (2012), pp. 1-18

[5] Boralugoda, S.; Poliquin, R. A. Local integration of prox-regular functions in Hilbert spaces, J. Convex Anal., Volume 13 (2006), pp. 114-146

[6] Bounkhel, M.; Tadj, L.; A. Hamdi Iterative schemes to solve nonconvex variational problems, J. Inequal. pure Appl. Math., Volume 28(4) (2003), pp. 1-14

[7] Cho, Y. J.; Qin, X. Systems of generalized nonlinear variational inequalities and its projection methods, Nonlinear Anal. TMA series A, Volume 69(12) (2003), pp. 4443-4451

[8] Clarke, F. H.; Ledyaev, Yu. S.; Stern, R. J.; Wolenski, P. R. Nonsmooth Analysis and Control Theory, Springer, New York, 1998

[9] Clarke, F. H.; Stern, R. J.; P. R. Wolenski Proximal smoothness and the lower \(C^2\) property, J. Convex Anal. , Volume 2 (1-2) (1995), pp. 117-144

[10] Cohen, C.; F. Chaplais Nested monotony for variational inequalities over product of spaces and convergence of iterative algorithms, J. Optim. Theory Appl., Volume 59 (1988), pp. 360-390

[11] Ferris, M.; J.-S. Pang Engineering and economics applications of complementarity problems, SIAM Rev. , Volume 39 (1997), pp. 669-713

[12] He, Z.; Chen, C.; Gu, F. Viscosity approximation method for nonexpansive nonself-mapping and variational inequality, J. Nonlinear Sci. Appl., Volume 1(3) (2008), pp. 169-178

[13] Kassey, G.; Kolumban, J. System of multi-valued variational inequalities, Publ. Math. Debrecen, Volume 56 (2000), pp. 185-195

[14] Kazmi, K. R.; Bhat, M. I.; Ahmed, Naeem An iterative algorithm based on M-proximal mappings for a generalized implicit variational inclusions in Banach spaces, J. Comput. Appl. Math. , Volume 233 (2009), pp. 361-371

[15] Kazmi, K. R.; Khan, F. A. Iterative approximation of a unique solution of a system of variational-like inclusions in real q-uniformly smooth Banach spaces, Nonlinear Anal. TMA series A , Volume 67(3) (2007), pp. 917-929

[16] Kazmi, K. R.; Khan, F. A.; M. Shahzad A system of generalized variational inclusion involving generalized H(.,.)-accretive mapping in real q-uniformly smooth Banach spaces, Appl. Math. Comput. , Volume 217(23) (2011), pp. 9679-9688

[17] Kazmi, K. R.; Khan, F. A.; Shahzad, M. Two step algorithm for solving regularized generalized mixed variational inequality problem, Bull. Korean Math. Soc. , Volume 47 (2010), pp. 675-685

[18] Konnov, I. V. Relatively monotone variational inequalities over product sets, Oper. Res. Lett. , Volume 28 (2001), pp. 21-26

[19] Li, H. G. Generalized fuzzy random set-valued mixed variational inclusions involving random nonlinear (\(A_\omega,\eta_\omega\))- accretive mappings in Banach spaces, J. Nonlinear Sci. Appl., Volume 3(1) (2010), pp. 63-77

[20] Moudafi, A. Projection methods for a system of nonconvex variational inequalities, Nonlinear Anal. TMA series A , Volume 71 (2009), pp. 517-520

[21] Nagurney, A. Network Economics: A Variational Inequality Approach, Kluwer Academic Publishers, Dordrecht, 1993

[22] M. A. Noor Projection methods for nonconvex variational inequalities, Optim. Lett. , Volume 3 (2009), pp. 411-418

[23] Noor, M. A.; Al-said, E. Iterative methods for general nonconvex variational inequalities, Appl. Comput. Math., Volume 10(2) (2011), pp. 309-320

[24] Noor, M. A.; Noor, K. I. New system of general nonconvex variational inequalities, Appl. Math. E-Notes, Volume 10 (2010), pp. 76-85

[25] Pang, J.-S. Asymmetric variational inequalities over product of sets: Applications and iterative methods, Math. Prog. , Volume 31 (1985), pp. 206-219

[26] Poliquin, R. A.; R. T. Rockafellar Prox-regular functions in variational analysis , Trans. American Math. Soc., Volume 348 (1996), pp. 1805-1838

[27] Verma, R. U. Generalized system of relaxed cocoercive variational inequalities and projection methods, J. Optim. Theory Appl., Volume 121(1) (2004), pp. 203-210

[28] D.-J. Wen Projection methods for a generalized system of nonconvex variational inequalities with different operators, Nonlinear Anal. TMA series A, Volume 73 (2010), pp. 2292-2297

Cité par Sources :