Voir la notice de l'article provenant de la source International Scientific Research Publications
Samet, Bessem 1 ; Vetro, Calogero 2 ; Yazidi, Habib 3
@article{JNSA_2013_6_3_a1, author = {Samet, Bessem and Vetro, Calogero and Yazidi, Habib}, title = {A fixed point theorem for a {Meir-Keeler} type contraction through rational expression}, journal = {Journal of nonlinear sciences and its applications}, pages = {162-169}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {2013}, doi = {10.22436/jnsa.006.03.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.02/} }
TY - JOUR AU - Samet, Bessem AU - Vetro, Calogero AU - Yazidi, Habib TI - A fixed point theorem for a Meir-Keeler type contraction through rational expression JO - Journal of nonlinear sciences and its applications PY - 2013 SP - 162 EP - 169 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.02/ DO - 10.22436/jnsa.006.03.02 LA - en ID - JNSA_2013_6_3_a1 ER -
%0 Journal Article %A Samet, Bessem %A Vetro, Calogero %A Yazidi, Habib %T A fixed point theorem for a Meir-Keeler type contraction through rational expression %J Journal of nonlinear sciences and its applications %D 2013 %P 162-169 %V 6 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.02/ %R 10.22436/jnsa.006.03.02 %G en %F JNSA_2013_6_3_a1
Samet, Bessem; Vetro, Calogero; Yazidi, Habib. A fixed point theorem for a Meir-Keeler type contraction through rational expression. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 3, p. 162-169. doi : 10.22436/jnsa.006.03.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.02/
[1] On \(\Phi\)-fixed point for maps on uniform spaces, J. Nonlinear Sci. Appl., Volume 1 (4) (2008), pp. 241-243
[2] Fixed points of weakly compatible maps satisfying a general contractive condition of integral type, Fixed Point Theory Appl., Article ID 17301 , Volume 2007 (2007), pp. 1-9
[3] Kannan fixed point theorem on generalized metric spaces, J. Nonlinear Sci. Appl. , Volume 1 (1) (2008), pp. 45-48
[4] Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math. , Volume 3 (1922), pp. 133-181
[5] Generalized cone metric spaces, J. Nonlinear Sci. Appl., Volume 3 (1) (2010), pp. 21-31
[6] A fixed point theorem of Banach-Caccippoli type on a class of generalized metric spaces, Publ. Math. Debrecen, Volume 57 (2000), pp. 31-37
[7] A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. , Volume 29 (2002), pp. 531-536
[8] On generalization of Banach contraction principle , Indian J. Pure Appl. Math., Volume 10 (4) (1979), pp. 400-403
[9] A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., Volume 45 (1974), pp. 267-273
[10] A new fixed point theorem for contractive mappings, Publ. Inst. Math. (Beograd), Volume 30 (44) (1981), pp. 25-27
[11] An extension of Banach contraction principle through rational expression , Indian J. Pure Appl. Math., Volume 6 (1975), pp. 1455-1458
[12] Common fixed point theorems of Gregus type for weakly compatible mappings satisfying contractive conditions of integral type, J. Math. Anal. Appl., Volume 329 (2007), pp. 31-45
[13] On fixed and periodic points under contractive mappings, J. Lond. math. Soc., Volume 37 (1962), pp. 74-79
[14] A generalization of Nadler's fixed point theorem, J. Nonlinear Sci. Appl., Volume 3 (2) (2010), pp. 148-151
[15] Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., Volume 194 (1995), pp. 293-303
[16] The Kannan's fixed point theorem in a cone rectangular metric space, J. Nonlinear Sci. Appl., Volume 2 (3) (2009), pp. 161-167
[17] On some generalizations of the Banach contraction theorem, Publ. Res. Inst. Math. Sci. , Volume 12 (2) (1976), pp. 427-437
[18] Contraction mappings and extensions, in Handbook of Metric Fixed Point Theory, W. A. Kirk and B. Sims, Eds., pp.1-34, Kluwer Academic, Dordrecht, The Netherlands, 2001
[19] Fixed point theorems for contractive mappings in metric spaces , Časopis Pro Pěstování Matematiky, Volume 105 (4) (1980), pp. 341-344
[20] A theorem on contraction mappings , J. Math. Anal. Appl. , Volume 28 (1969), pp. 326-329
[21] A generalization of the Banach Contraction Principle, J. Math. Anal. Appl. , Volume 273 (2002), pp. 112-120
[22] On Kannan fixed point principle in generalized metric spaces, J. Nonlinear Sci. Appl., Volume 2 (2) (2009), pp. 92-96
[23] Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. , Volume 63 (2003), pp. 4007-4013
[24] A fixed point theorem in a generalized metric space for mappings satisfying a contractive condition of integral type, Int. Journal of Math. Analysis, Volume 3 (26) (2009), pp. 1265-1271
[25] Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal., Volume 72 (2010), pp. 4508-4517
[26] Ciric's fixed point theorem in a cone metric space, in J. Nonlinear Sci. Appl. (to appear)
[27] An extension of Banach fixed point theorem for mappings satisfying a contractive condition of integral type, J. Pure Appl. Math. ( to appear)
[28] Meir-Keeler Contractions of Integral Type Are Still Meir-Keeler Contractions, Int. J. Math. Math. Sci., Article ID 39281, Volume 2007 (2007), pp. 1-6
[29] On Branciari's theorem for weakly compatible mappings, Appl. Math. Lett., Volume 23 (6) (2010), pp. 700-705
[30] A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. , Volume 15 (2005), pp. 2359-2364
Cité par Sources :