A fixed point theorem for a Meir-Keeler type contraction through rational expression
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 3, p. 162-169.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we establish a new fixed point theorem for a Meir-Keeler type contraction through rational expression. The presented theorem is an extension of the result of Dass and Gupta (1975). Some applications to contractions of integral type are given.
DOI : 10.22436/jnsa.006.03.02
Classification : 54H25, 47H10
Keywords: Fixed point, Meir-Keeler type contraction, Rational expression, Contraction of integral type.

Samet, Bessem 1 ; Vetro, Calogero 2 ; Yazidi, Habib 3

1 Department of Mathematics, King Saud University, Riyadh, Saudi Arabia
2 Dipartimento di Matematica e Informatica, Universita degli Studi di Palermo, via Archirafi 34, 90123 Palermo, Italy
3 Département de Mathématiques, Ecole Supérieure des Sciences et Techniques de Tunis, 5, Avenue Taha Hussein-Tunis, B. P.: 56, Bab Menara-1008, Tunisie
@article{JNSA_2013_6_3_a1,
     author = {Samet, Bessem and Vetro, Calogero and Yazidi, Habib},
     title = {A fixed point theorem for a {Meir-Keeler} type contraction through rational expression},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {162-169},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2013},
     doi = {10.22436/jnsa.006.03.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.02/}
}
TY  - JOUR
AU  - Samet, Bessem
AU  - Vetro, Calogero
AU  - Yazidi, Habib
TI  - A fixed point theorem for a Meir-Keeler type contraction through rational expression
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 162
EP  - 169
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.02/
DO  - 10.22436/jnsa.006.03.02
LA  - en
ID  - JNSA_2013_6_3_a1
ER  - 
%0 Journal Article
%A Samet, Bessem
%A Vetro, Calogero
%A Yazidi, Habib
%T A fixed point theorem for a Meir-Keeler type contraction through rational expression
%J Journal of nonlinear sciences and its applications
%D 2013
%P 162-169
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.02/
%R 10.22436/jnsa.006.03.02
%G en
%F JNSA_2013_6_3_a1
Samet, Bessem; Vetro, Calogero; Yazidi, Habib. A fixed point theorem for a Meir-Keeler type contraction through rational expression. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 3, p. 162-169. doi : 10.22436/jnsa.006.03.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.02/

[1] Alimohammady, M.; Ramzannezhad, M. On \(\Phi\)-fixed point for maps on uniform spaces, J. Nonlinear Sci. Appl., Volume 1 (4) (2008), pp. 241-243

[2] Altun, I.; Türkoğlu, D.; Rhoades, B. E. Fixed points of weakly compatible maps satisfying a general contractive condition of integral type, Fixed Point Theory Appl., Article ID 17301 , Volume 2007 (2007), pp. 1-9

[3] Azam, A.; M. Arshad Kannan fixed point theorem on generalized metric spaces, J. Nonlinear Sci. Appl. , Volume 1 (1) (2008), pp. 45-48

[4] Banach, S. Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math. , Volume 3 (1922), pp. 133-181

[5] Beg, I.; Abbas, M.; Nazir, T. Generalized cone metric spaces, J. Nonlinear Sci. Appl., Volume 3 (1) (2010), pp. 21-31

[6] A. Branciari A fixed point theorem of Banach-Caccippoli type on a class of generalized metric spaces, Publ. Math. Debrecen, Volume 57 (2000), pp. 31-37

[7] Branciari, A. A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. , Volume 29 (2002), pp. 531-536

[8] Chatterjee, H. On generalization of Banach contraction principle , Indian J. Pure Appl. Math., Volume 10 (4) (1979), pp. 400-403

[9] Ćirić, Lj. B. A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., Volume 45 (1974), pp. 267-273

[10] Ćirić, Lj. B. A new fixed point theorem for contractive mappings, Publ. Inst. Math. (Beograd), Volume 30 (44) (1981), pp. 25-27

[11] Dass, B. K.; S. Gupta An extension of Banach contraction principle through rational expression , Indian J. Pure Appl. Math., Volume 6 (1975), pp. 1455-1458

[12] Djoudi, A.; A. Aliouche Common fixed point theorems of Gregus type for weakly compatible mappings satisfying contractive conditions of integral type, J. Math. Anal. Appl., Volume 329 (2007), pp. 31-45

[13] Edelstein, M. On fixed and periodic points under contractive mappings, J. Lond. math. Soc., Volume 37 (1962), pp. 74-79

[14] Gordji, M. Eshaghi; Baghani, H.; Khodaei, H.; Ramezani, M. A generalization of Nadler's fixed point theorem, J. Nonlinear Sci. Appl., Volume 3 (2) (2010), pp. 148-151

[15] Jachymski, J. Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., Volume 194 (1995), pp. 293-303

[16] Jleli, M.; B. Samet The Kannan's fixed point theorem in a cone rectangular metric space, J. Nonlinear Sci. Appl., Volume 2 (3) (2009), pp. 161-167

[17] Kasahara, S. On some generalizations of the Banach contraction theorem, Publ. Res. Inst. Math. Sci. , Volume 12 (2) (1976), pp. 427-437

[18] Kirk, W. A. Contraction mappings and extensions, in Handbook of Metric Fixed Point Theory, W. A. Kirk and B. Sims, Eds., pp.1-34, Kluwer Academic, Dordrecht, The Netherlands, 2001

[19] Matkowski, J. Fixed point theorems for contractive mappings in metric spaces , Časopis Pro Pěstování Matematiky, Volume 105 (4) (1980), pp. 341-344

[20] Meir, A.; E. Keeler A theorem on contraction mappings , J. Math. Anal. Appl. , Volume 28 (1969), pp. 326-329

[21] Merryfield, J.; Stein, J. D. A generalization of the Banach Contraction Principle, J. Math. Anal. Appl. , Volume 273 (2002), pp. 112-120

[22] Mihet, D. On Kannan fixed point principle in generalized metric spaces, J. Nonlinear Sci. Appl., Volume 2 (2) (2009), pp. 92-96

[23] Rhoades, B. E. Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. , Volume 63 (2003), pp. 4007-4013

[24] Samet, B. A fixed point theorem in a generalized metric space for mappings satisfying a contractive condition of integral type, Int. Journal of Math. Analysis, Volume 3 (26) (2009), pp. 1265-1271

[25] Samet, B. Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal., Volume 72 (2010), pp. 4508-4517

[26] B. Samet Ciric's fixed point theorem in a cone metric space, in J. Nonlinear Sci. Appl. (to appear)

[27] Samet, B.; Yazidi, H. An extension of Banach fixed point theorem for mappings satisfying a contractive condition of integral type, J. Pure Appl. Math. ( to appear)

[28] T. Suzuki Meir-Keeler Contractions of Integral Type Are Still Meir-Keeler Contractions, Int. J. Math. Math. Sci., Article ID 39281, Volume 2007 (2007), pp. 1-6

[29] Vetro, C. On Branciari's theorem for weakly compatible mappings, Appl. Math. Lett., Volume 23 (6) (2010), pp. 700-705

[30] Vijayaraju, P.; Rhoades, B. E.; R. Mohanraj A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. , Volume 15 (2005), pp. 2359-2364

Cité par Sources :