Common fixed points of mappings satisfying implicit relations in partial metric spaces
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 3, p. 152-161.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Matthews, [S. G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci., vol. 728, 1994, pp. 183-197], introduced and studied the concept of partial metric space, as a part of the study of denotational semantics of data flow networks. He also obtained a Banach type fixed point theorem on complete partial metric spaces. Very recently Berinde and Vetro, [V. Berinde, F. Vetro, Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory and Applications 2012, 2012:105], discussed, in the setting of metric and ordered metric spaces, coincidence point and common fixed point theorems for self-mappings in a general class of contractions defined by an implicit relation. In this work, in the setting of partial metric spaces, we study coincidence point and common fixed point theorems for two self-mappings satisfying generalized contractive conditions, defined by implicit relations. Our results unify, extend and generalize some related common fixed point theorems of the literature.
DOI : 10.22436/jnsa.006.03.01
Classification : 47H10, 54H25
Keywords: Coincidence point, common fixed point, contraction, implicit relation, partial metric space.

Vetro, Calogero 1 ; Vetro, Francesca 2

1 Dipartimento di Matematica e Informatica, Universita degli Studi di Palermo, via Archirafi 34, 90123 Palermo, Italy
2 DEIM, Universita degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
@article{JNSA_2013_6_3_a0,
     author = {Vetro, Calogero and Vetro, Francesca},
     title = {Common fixed points of mappings satisfying implicit relations in partial metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {152-161},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2013},
     doi = {10.22436/jnsa.006.03.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.01/}
}
TY  - JOUR
AU  - Vetro, Calogero
AU  - Vetro, Francesca
TI  - Common fixed points of mappings satisfying implicit relations in partial metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 152
EP  - 161
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.01/
DO  - 10.22436/jnsa.006.03.01
LA  - en
ID  - JNSA_2013_6_3_a0
ER  - 
%0 Journal Article
%A Vetro, Calogero
%A Vetro, Francesca
%T Common fixed points of mappings satisfying implicit relations in partial metric spaces
%J Journal of nonlinear sciences and its applications
%D 2013
%P 152-161
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.01/
%R 10.22436/jnsa.006.03.01
%G en
%F JNSA_2013_6_3_a0
Vetro, Calogero; Vetro, Francesca. Common fixed points of mappings satisfying implicit relations in partial metric spaces. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 3, p. 152-161. doi : 10.22436/jnsa.006.03.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.03.01/

[1] Abbas, M.; Ilic, D. Common fixed points of generalized almost nonexpansive mappings, Filomat , Volume 24:3 (2010), pp. 11-18

[2] Ali, J.; Imdad, M. Unifying a multitude of common fixed point theorems employing an implicit relation, Commun. Korean Math. Soc., Volume 24 (2009), pp. 41-55

[3] Aliouche, A.; Djoudi, A. Common fixed point theorems for mappings satisfying an implicit relation without decreasing assumption, Hacet. J. Math. Stat. , Volume 36 (2007), pp. 11-18

[4] Aydi, H.; Abbas, M.; Vetro, C. Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces , Topology Appl. , Volume 159 (2012), pp. 3234-3242

[5] Aydi, H.; Vetro, C.; Sintunavarat, W.; Kumam, P. Coincidence and fixed points for contractions and cyclical contractions in partial metric spaces, Fixed Point Theory Appl. , Volume 2012 (2012), pp. 1-124

[6] Babu, G. V. R.; Sandhy, M. L.; Kameshwari, M. V. R. A note on a fixed point theorem of Berinde on weak contractions, Carpathian J. Math. , Volume 24 (2008), pp. 8-12

[7] S. Banach Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. , Volume 3 (1922), pp. 133-181

[8] Berinde, V. Stability of Picard iteration for contractive mappings satisfying an implicit relation , Carpathian J. Math. , Volume 27 (2011), pp. 13-23

[9] Berinde, V. Approximating fixed points of implicit almost contractions, Hacet. J. Math. Stat. , Volume 40 (2012), pp. 93-102

[10] Berinde, V.; Vetro, F. Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-105

[11] Chatterjea, S. K. Fixed-point theorems, C. R. Acad. Bulgare Sci. , Volume 25 (1972), pp. 727-730

[12] Cherichi, M.; Samet, B. Fixed point theorems on ordered gauge spaces with applications to nonlinear integral equations, Fixed Point Theory Appl. , Volume 2012 (2012), pp. 1-13

[13] Ćirić, L.; Agarwal, R. P.; B. Samet Mixed monotone-generalized contractions in partially ordered probabilistic metric spaces, Fixed Point Theory Appl. , Volume 2011 (2011), pp. 1-56

[14] Bari, C. Di; Vetro, P. Common fixed points for \(\psi\)-contractions on partial metric spaces, to appear in Hacettepe Journal of Mathematics and Statistics

[15] Bari, C. Di; Vetro, P. Fixed points for weak \(\varphi\)-contractions on partial metric spaces, Int. J. of Engineering, Contemporary Mathematics and Sciences , Volume 1 (2011), pp. 5-13

[16] Golubović, Z.; Kadelburg, Z.; Radenović, S. Common fixed points of ordered g-quasicontractions and weak contractions in ordered metric spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-20

[17] Hardy, G. E.; Rogers, T. D. A generalization of a fixed point theorem of Reich, Canad. Math. Bull. , Volume 16 (1973), pp. 201-206

[18] Jleli, M.; Rajić, V. Ćojbašić; Samet, B.; C. Vetro Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations, J. Fixed Point Theory Appl. , doi:10.1007/s11784-012-0081-4. , 2012

[19] R. Kannan Some results on fixed points, Bull. Calcutta Math. Soc. , Volume 10 (1968), pp. 71-76

[20] Matthews, S. G. Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci. , Volume 728 (1994), pp. 183-197

[21] Nashine, H. K.; Samet, B.; C. Vetro Fixed point theorems in partially ordered metric spaces and existence results for integral equations, Numer. Funct. Anal. Optim. , Volume 33 (2012), pp. 1304-1320

[22] Nieto, J. J.; Rodríguez-López, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order , Volume 22 (2005), pp. 223-239

[23] Oltra, S.; O. Valero Banach's fixed point theorem for partial metric spaces , Rend. Istit. Mat. Univ. Trieste, Volume 36 (2004), pp. 17-26

[24] O'Neill, S. J. Partial metrics, valuations and domain theory, in: Proc. 11th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci., Volume 806 (1996), pp. 304-315

[25] Paesano, D.; Vetro, P. Suzuki's type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topology Appl., Volume 159 (2012), pp. 911-920

[26] V. Popa Fixed point theorems for implicit contractive mappings, Stud. Cerc. St. Ser. Mat. Univ. Bacău, Volume 7 (1997), pp. 127-133

[27] Popa, V. Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math., Volume 32 (1999), pp. 157-163

[28] Popa, V.; Imdad, M.; Ali, J. Using implicit relations to prove unified fixed point theorems in metric and 2-metric spaces, Bull. Malays. Math. Sci. Soc. , Volume 33 (2010), pp. 105-120

[29] Ran, A. C. M.; M. C. Reurings A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. , Volume 132 (2004), pp. 1435-1443

[30] Romaguera, S. A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl., Article ID 493298 (2010), pp. 1-6

[31] Romaguera, S.; Valero, O. A quantitative computational model for complete partial metric spaces via formal balls, Math. Struct. in Comp. Science, Volume 19 (2009), pp. 541-563

[32] Rus, I. A.; Petruşel, A.; G. Petruşel Fixed Point Theory , Cluj University Press, Cluj-Napoca, 2008

[33] Schellekens, M. P. The correspondence between partial metrics and semivaluations , Theoret. Comput. Sci. , Volume 315 (2004), pp. 135-149

[34] M. Turinici Abstract comparison principles and multivariable Gronwall-Bellman inequalities, J. Math. Anal. Appl. , Volume 117 (1986), pp. 100-127

[35] Valero, O. On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol., Volume 6 (2005), pp. 229-240

[36] Vetro, C. Common fixed points in ordered Banach spaces, Le Matematiche , Volume 63 (2008), pp. 93-100

[37] Vetro, F.; Radenović, S. Nonlinear \(\psi\)-quasi-contractions of Ćirić-type in partial metric spaces, Appl. Math. Comput. , Volume 219 (2012), pp. 1594-1600

[38] Waszkiewicz, P. Partial metrisability of continuous posets, Math. Struct. in Comp. Science, Volume 16 (2006), pp. 359-372

Cité par Sources :