Voir la notice de l'article provenant de la source International Scientific Research Publications
Cernea, Aurelian 1
@article{JNSA_2013_6_2_a9, author = {Cernea, Aurelian}, title = {On controllability for nonconvex semilinear differential inclusions}, journal = {Journal of nonlinear sciences and its applications}, pages = {145-151}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2013}, doi = {10.22436/jnsa.006.02.10}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.10/} }
TY - JOUR AU - Cernea, Aurelian TI - On controllability for nonconvex semilinear differential inclusions JO - Journal of nonlinear sciences and its applications PY - 2013 SP - 145 EP - 151 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.10/ DO - 10.22436/jnsa.006.02.10 LA - en ID - JNSA_2013_6_2_a9 ER -
%0 Journal Article %A Cernea, Aurelian %T On controllability for nonconvex semilinear differential inclusions %J Journal of nonlinear sciences and its applications %D 2013 %P 145-151 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.10/ %R 10.22436/jnsa.006.02.10 %G en %F JNSA_2013_6_2_a9
Cernea, Aurelian. On controllability for nonconvex semilinear differential inclusions. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 2, p. 145-151. doi : 10.22436/jnsa.006.02.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.10/
[1] Set-valued Analysis, Birkhauser, Berlin, 1990
[2] Continuous version of Filippov's theorem for a semilinear differential inclusion, Stud. Cerc. Mat., Volume 49 (1997), pp. 319-330
[3] Derived cones to reachable sets of semilinear differential inclusions, Proc. 19th Int. Symp. Math. Theory Networks Systems, Budapest, Ed. A. Edelmayer (2010), pp. 235-238
[4] Some qualitative properties of the solution set of an infinite horizon operational differential inclusion, Revue Roumaine Math. Pures Appl. , Volume 43 (1998), pp. 317-328
[5] On the relaxation theorem for semilinear differential inclusions in Banach spaces , Pure Math. Appl., Volume 13 (2002), pp. 441-445
[6] On the solution set of some classes of nonconvex nonclosed differential inclusions, Portugaliae Math., Volume 65 (2008), pp. 485-496
[7] Optimization and Nonsmooth Analysis , Wiley Interscience, New York, 1983
[8] Evolutions inclusions in non separable Banach spaces, Comment. Math. Univ. Carolinae, Volume 40 (1999), pp. 227-250
[9] Topological properties of nonconvex differential inclusions of evolution type , Nonlinear Anal. , Volume 24 (1995), pp. 711-720
[10] A priori estimates for operational differential inclusions , J. Diff. Eqs. , Volume 84 (1990), pp. 100-128
[11] An approach to differentiation of many-valued mapping and necessary condition for optimization of solution of differential inclusions, Diff. Equations. , Volume 22 (1986), pp. 660-668
[12] Continuous selections of solutions sets to evolution equations , Proc. Amer. Math. Soc. , Volume 113 (1991), pp. 403-413
[13] On controllability and extremality in nonconvex differential inclusions, J. Optim. Theory Appl. , Volume 85 (1995), pp. 437-474
[14] Controllability, extremality and abnormality in nonsmooth optimal control , J. Optim. Theory Appl. , Volume 41 (1983), pp. 239-260
Cité par Sources :