On controllability for nonconvex semilinear differential inclusions
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 2, p. 145-151.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We consider a semilinear differential inclusion and we obtain sufficient conditions for h-local controllability along a reference trajectory.
DOI : 10.22436/jnsa.006.02.10
Classification : 34A60
Keywords: Differential inclusion, h-local controllability, mild solution

Cernea, Aurelian 1

1 Faculty of Mathematics and Computer Science, University of Bucharest, Academiei 14, 010014 Bucharest, Romania
@article{JNSA_2013_6_2_a9,
     author = {Cernea, Aurelian},
     title = {On controllability for nonconvex semilinear differential inclusions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {145-151},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2013},
     doi = {10.22436/jnsa.006.02.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.10/}
}
TY  - JOUR
AU  - Cernea, Aurelian
TI  - On controllability for nonconvex semilinear differential inclusions
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 145
EP  - 151
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.10/
DO  - 10.22436/jnsa.006.02.10
LA  - en
ID  - JNSA_2013_6_2_a9
ER  - 
%0 Journal Article
%A Cernea, Aurelian
%T On controllability for nonconvex semilinear differential inclusions
%J Journal of nonlinear sciences and its applications
%D 2013
%P 145-151
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.10/
%R 10.22436/jnsa.006.02.10
%G en
%F JNSA_2013_6_2_a9
Cernea, Aurelian. On controllability for nonconvex semilinear differential inclusions. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 2, p. 145-151. doi : 10.22436/jnsa.006.02.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.10/

[1] Aubin, J. P.; Frankowska, H. Set-valued Analysis, Birkhauser, Berlin, 1990

[2] Cernea, A. Continuous version of Filippov's theorem for a semilinear differential inclusion, Stud. Cerc. Mat., Volume 49 (1997), pp. 319-330

[3] Cernea, A. Derived cones to reachable sets of semilinear differential inclusions, Proc. 19th Int. Symp. Math. Theory Networks Systems, Budapest, Ed. A. Edelmayer (2010), pp. 235-238

[4] Cernea, A. Some qualitative properties of the solution set of an infinite horizon operational differential inclusion, Revue Roumaine Math. Pures Appl. , Volume 43 (1998), pp. 317-328

[5] A. Cernea On the relaxation theorem for semilinear differential inclusions in Banach spaces , Pure Math. Appl., Volume 13 (2002), pp. 441-445

[6] Cernea, A. On the solution set of some classes of nonconvex nonclosed differential inclusions, Portugaliae Math., Volume 65 (2008), pp. 485-496

[7] Clarke, F. H. Optimization and Nonsmooth Analysis , Wiley Interscience, New York, 1983

[8] Blasi, F. S. De; Pianigiani, G. Evolutions inclusions in non separable Banach spaces, Comment. Math. Univ. Carolinae, Volume 40 (1999), pp. 227-250

[9] Blasi, F. S. De; Pianigiani, G.; V. Staicu Topological properties of nonconvex differential inclusions of evolution type , Nonlinear Anal. , Volume 24 (1995), pp. 711-720

[10] Frankowska, H. A priori estimates for operational differential inclusions , J. Diff. Eqs. , Volume 84 (1990), pp. 100-128

[11] Polovinkin, E. S.; Smirnov, G. V. An approach to differentiation of many-valued mapping and necessary condition for optimization of solution of differential inclusions, Diff. Equations. , Volume 22 (1986), pp. 660-668

[12] Staicu, V. Continuous selections of solutions sets to evolution equations , Proc. Amer. Math. Soc. , Volume 113 (1991), pp. 403-413

[13] Tuan, H. D. On controllability and extremality in nonconvex differential inclusions, J. Optim. Theory Appl. , Volume 85 (1995), pp. 437-474

[14] Warga, J. Controllability, extremality and abnormality in nonsmooth optimal control , J. Optim. Theory Appl. , Volume 41 (1983), pp. 239-260

Cité par Sources :