Voir la notice de l'article provenant de la source International Scientific Research Publications
Urs, Cristina 1
@article{JNSA_2013_6_2_a7, author = {Urs, Cristina}, title = {Ulam-Hyers stability for coupled fixed points of contractive type operators}, journal = {Journal of nonlinear sciences and its applications}, pages = {124-136}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2013}, doi = {10.22436/jnsa.006.02.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.08/} }
TY - JOUR AU - Urs, Cristina TI - Ulam-Hyers stability for coupled fixed points of contractive type operators JO - Journal of nonlinear sciences and its applications PY - 2013 SP - 124 EP - 136 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.08/ DO - 10.22436/jnsa.006.02.08 LA - en ID - JNSA_2013_6_2_a7 ER -
%0 Journal Article %A Urs, Cristina %T Ulam-Hyers stability for coupled fixed points of contractive type operators %J Journal of nonlinear sciences and its applications %D 2013 %P 124-136 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.08/ %R 10.22436/jnsa.006.02.08 %G en %F JNSA_2013_6_2_a7
Urs, Cristina. Ulam-Hyers stability for coupled fixed points of contractive type operators. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 2, p. 124-136. doi : 10.22436/jnsa.006.02.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.08/
[1] Numerical Linear Algebra, Texts in Applied Mathematics, vol. 55, Springer, New York, 2008
[2] Ulam-Hyers stability for operatorial equations, Analls of the Alexandru Ioan Cuza University Iasi, Volume 57 (2011), pp. 65-74
[3] Fixed points for multivalued operators on a set endowed with vector-valued metrics and applications, Fixed Point Theory, Volume 10 (2009), pp. 19-34
[4] Fixed point theorems on spaces endowed with vector-valued metrics, Fixed Point Theory and Applications, Article ID 281381, Volume 2010 (2009), pp. 1-15
[5] Fixed point theorems on spaces endowed with vector-valued metrics, Fixed Point Theory and Applications, Article ID 281381, Volume 2010 (2009), pp. 1-15
[6] Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., Volume 65 (2006), pp. 1379-1393
[7] Coupled fixed points of nonlinear operators with applications , Nonlinear Anal., Volume 11 (1987), pp. 623-632
[8] Partial Ordering Methods in Nonlinear Problems, Nova Science Publishers Inc., Hauppauge, NY, 2004
[9] Fixed points for mixed monotone multivalued operators in Banach spaces with applications, J. Math. Anal. Appl., Volume 337 (2008), pp. 333-342
[10] Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. , Volume 70 (2009), pp. 4341-4349
[11] On the Cauchy problem for a system of ordinary differential equations, Pviblizhen. Met. Reshen. Differ. Uvavn, Volume 2 (1964), pp. 115-134
[12] Ulam-Hyers stability for operatorial equations and inclusions via nonself operators, Taiwanese J. Math., Volume 15 (2011), pp. 2195-2212
[13] Multivalued weakly Picard operators and applications, Sci. Math. Japon, Volume 59 (2004), pp. 169-202
[14] The role of matrices that are convergent to zero in the study of semilinear operator systems, Math. Comput. Modell, Volume 49 (2009), pp. 703-708
[15] Principles, Applications of the Fixed Point Theory, Dacia, Cluj-Napoca, 1979
[16] Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, Volume 10 (2009), pp. 305-320
[17] The method of monotone iterations for mixed monotone operators, Ph. D. Thesis, Universitatea Babes-Bolyai, Cluj-Napoca, 2010
[18] Matrix Iterative Analysis, Springer Series in Computational Mathematics, Vol. 27, Springer, Berlin, 2000
Cité par Sources :