Voir la notice de l'article provenant de la source International Scientific Research Publications
Filip, Alexandru-Darius 1
@article{JNSA_2013_6_2_a6, author = {Filip, Alexandru-Darius}, title = {A fixed point theory for {\(S\)-contractions} in generalized {Kasahara} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {117-123}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2013}, doi = {10.22436/jnsa.006.02.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.07/} }
TY - JOUR AU - Filip, Alexandru-Darius TI - A fixed point theory for \(S\)-contractions in generalized Kasahara spaces JO - Journal of nonlinear sciences and its applications PY - 2013 SP - 117 EP - 123 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.07/ DO - 10.22436/jnsa.006.02.07 LA - en ID - JNSA_2013_6_2_a6 ER -
%0 Journal Article %A Filip, Alexandru-Darius %T A fixed point theory for \(S\)-contractions in generalized Kasahara spaces %J Journal of nonlinear sciences and its applications %D 2013 %P 117-123 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.07/ %R 10.22436/jnsa.006.02.07 %G en %F JNSA_2013_6_2_a6
Filip, Alexandru-Darius. A fixed point theory for \(S\)-contractions in generalized Kasahara spaces. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 2, p. 117-123. doi : 10.22436/jnsa.006.02.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.07/
[1] A converse to a contraction mapping theorem in uniform spaces, Nonlinear Analysis, Volume 12 (1988), pp. 989-996
[2] Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae, Volume 3 (1922), pp. 133-181
[3] Un teorema generale sull'esistenza di elementi uniti in una transformazione funzionale, Rendiconti dell'Academia Nazionale dei Lincei, Volume 11 (1930), pp. 794-799
[4] Infinite Matrices and Sequence Spaces, London, , 1950
[5] Fixed point theorems in Kasahara spaces with respect to an operator and applications, Fixed Point Theory, Volume 12 (2011), pp. 329-340
[6] Les espaces abstraits , Gauthier-Villars, Paris, 1928
[7] Fixed point and continuation results for contractions in metric and gauge spaces, Banach Center Publ., Volume 77 (2007), pp. 89-114
[8] Fixed point theorems in uniform spaces , An. Ştiinţ. Al. I. Cuza Univ. Iaşi, Secţ. I Mat., Volume 1982 (28), pp. 17-18
[9] On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, Volume 27 (1941), pp. 222-224
[10] The stability of homomorphism and related topics, in: Global Analysis - Analysis on Manifolds (Th.M. Rassias (ed.)), Teubner, Leipzig (1983), pp. 140-153
[11] An approach to fixed point theorems , Math. Sem. Notes, Volume 3 (1975), pp. 193-202
[12] On some generalizations of the Banach contraction theorem , Publ. RIMS, Kyoto Univ., Volume 12 (1976), pp. 427-437
[13] Fixed point theorems in certain L-spaces, Math. Seminar Notes, Volume 5 (1977), pp. 29-35
[14] Picard operators and applications, Sci. Math. Jpn., Volume 58 (2003), pp. 191-219
[15] The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory, Volume 9 (2008), pp. 541-559
[16] Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, Volume 10 (2009), pp. 305-320
[17] Kasahara spaces, Sci. Math. Jpn., Volume 72 (2010), pp. 101-110
[18] Fixed Point Theory, Cluj University Press, Cluj-Napoca, 2008
[19] A Collection of Mathematical Problems, Interscience Publ., New York, 1960
[20] Generalization of the Banach-Caccioppoli principle to operators on pseudo- metric spaces, Diff. Urav., Volume 23 (1987), pp. 1497-1504
Cité par Sources :