A fixed point theory for $S$-contractions in generalized Kasahara spaces
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 2, p. 117-123.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The aim of this paper is to present a fixed point theory for $S$-contractions in generalized Kasahara spaces $(X;\rightarrow; d)$, where $d : X \times X \rightarrow s(\mathbb{R}_+)$ is not necessarily an $s(\mathbb{R}_+)$-metric.
DOI : 10.22436/jnsa.006.02.07
Classification : 47H10, 54H25
Keywords: Fixed point, \(S\)-contraction, generalized Kasahara space, sequence of successive approximations, \(s(\mathbb{R}_+)\)-metric, Neumann matrix, Ulam-Hyers stability.

Filip, Alexandru-Darius 1

1 Department of Mathematics, Babeş-Bolyai University of Cluj-Napoca, Kogălniceanu Street, No. 1, 400084 Cluj-Napoca, Romania
@article{JNSA_2013_6_2_a6,
     author = {Filip, Alexandru-Darius},
     title = {A fixed point theory for {\(S\)-contractions} in generalized {Kasahara} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {117-123},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2013},
     doi = {10.22436/jnsa.006.02.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.07/}
}
TY  - JOUR
AU  - Filip, Alexandru-Darius
TI  - A fixed point theory for \(S\)-contractions in generalized Kasahara spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 117
EP  - 123
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.07/
DO  - 10.22436/jnsa.006.02.07
LA  - en
ID  - JNSA_2013_6_2_a6
ER  - 
%0 Journal Article
%A Filip, Alexandru-Darius
%T A fixed point theory for \(S\)-contractions in generalized Kasahara spaces
%J Journal of nonlinear sciences and its applications
%D 2013
%P 117-123
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.07/
%R 10.22436/jnsa.006.02.07
%G en
%F JNSA_2013_6_2_a6
Filip, Alexandru-Darius. A fixed point theory for \(S\)-contractions in generalized Kasahara spaces. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 2, p. 117-123. doi : 10.22436/jnsa.006.02.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.07/

[1] Angelov, V. G. A converse to a contraction mapping theorem in uniform spaces, Nonlinear Analysis, Volume 12 (1988), pp. 989-996

[2] Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae, Volume 3 (1922), pp. 133-181

[3] Caccioppoli, R. Un teorema generale sull'esistenza di elementi uniti in una transformazione funzionale, Rendiconti dell'Academia Nazionale dei Lincei, Volume 11 (1930), pp. 794-799

[4] Cooke, R. G. Infinite Matrices and Sequence Spaces, London, , 1950

[5] A.-D. Filip Fixed point theorems in Kasahara spaces with respect to an operator and applications, Fixed Point Theory, Volume 12 (2011), pp. 329-340

[6] Fréchet, M. Les espaces abstraits , Gauthier-Villars, Paris, 1928

[7] Frigon, M. Fixed point and continuation results for contractions in metric and gauge spaces, Banach Center Publ., Volume 77 (2007), pp. 89-114

[8] Gheorghiu, N. Fixed point theorems in uniform spaces , An. Ştiinţ. Al. I. Cuza Univ. Iaşi, Secţ. I Mat., Volume 1982 (28), pp. 17-18

[9] Hyers, D. H. On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, Volume 27 (1941), pp. 222-224

[10] Hyers, D. H. The stability of homomorphism and related topics, in: Global Analysis - Analysis on Manifolds (Th.M. Rassias (ed.)), Teubner, Leipzig (1983), pp. 140-153

[11] K. Iséki An approach to fixed point theorems , Math. Sem. Notes, Volume 3 (1975), pp. 193-202

[12] S. Kasahara On some generalizations of the Banach contraction theorem , Publ. RIMS, Kyoto Univ., Volume 12 (1976), pp. 427-437

[13] Kasahara, S. Fixed point theorems in certain L-spaces, Math. Seminar Notes, Volume 5 (1977), pp. 29-35

[14] I. A. Rus Picard operators and applications, Sci. Math. Jpn., Volume 58 (2003), pp. 191-219

[15] Rus, I. A. The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory, Volume 9 (2008), pp. 541-559

[16] Rus, I. A. Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, Volume 10 (2009), pp. 305-320

[17] Rus, I. A. Kasahara spaces, Sci. Math. Jpn., Volume 72 (2010), pp. 101-110

[18] Rus, I. A.; Petruşeland, A.; G. Petruşel Fixed Point Theory, Cluj University Press, Cluj-Napoca, 2008

[19] S. M. Ulam A Collection of Mathematical Problems, Interscience Publ., New York, 1960

[20] Zabrejko, P. P. ; Makarevich, T. A. Generalization of the Banach-Caccioppoli principle to operators on pseudo- metric spaces, Diff. Urav., Volume 23 (1987), pp. 1497-1504

Cité par Sources :