Voir la notice de l'article provenant de la source International Scientific Research Publications
$s(x^*) = t(x^*) = y^*.$ |
Mleşniţe, Oana 1
@article{JNSA_2013_6_2_a5, author = {Mle\c{s}ni\c{t}e, Oana}, title = {Existence and {Ulam-Hyers} stability results for coincidence problems}, journal = {Journal of nonlinear sciences and its applications}, pages = {108-116}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2013}, doi = {10.22436/jnsa.006.02.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.06/} }
TY - JOUR AU - Mleşniţe, Oana TI - Existence and Ulam-Hyers stability results for coincidence problems JO - Journal of nonlinear sciences and its applications PY - 2013 SP - 108 EP - 116 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.06/ DO - 10.22436/jnsa.006.02.06 LA - en ID - JNSA_2013_6_2_a5 ER -
%0 Journal Article %A Mleşniţe, Oana %T Existence and Ulam-Hyers stability results for coincidence problems %J Journal of nonlinear sciences and its applications %D 2013 %P 108-116 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.06/ %R 10.22436/jnsa.006.02.06 %G en %F JNSA_2013_6_2_a5
Mleşniţe, Oana. Existence and Ulam-Hyers stability results for coincidence problems. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 2, p. 108-116. doi : 10.22436/jnsa.006.02.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.06/
[1] Ulam-Hyers stability for operatorial equations, Analele Univ. Al.I. Cuza Iaşi, Volume 57 (2011), pp. 65-74
[2] Coincidence Principles and Applications, Cluj University Press, in Romanian, 2001
[3] Hyers-Ulam-Rassias stability for a class of Volterra integral equations, Banach J. Math. Anal., Volume 3 (2009), pp. 36-43
[4] A coincidence theorem, Bull. de L'Acad. Pol. des Sciences, Volume 16 (1968), pp. 733-735
[5] A fixed point approach to the stability of a Volterra integral equation, Fixed Point Theory and Applications, Article ID 57064, Volume 2007 (2007), pp. 1-9
[6] On Cauchy problem for a system of ordinary differential equations, Pviblizhen. Met. Reshen. Differ. Uravn., Volume 2 (1964), pp. 115-134
[7] Ulam-Hyers stability for operatorial equations and inclusions via nonself operators, Taiwanese J. Math., Volume 15 (2011), pp. 2195-2212
[8] Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, Volume 10 (2009), pp. 305-320
[9] Ulam stability of ordinary differential equations, Studia Univ. Babeş-Bolyai Math., Volume 54 (2009), pp. 125-133
[10] Gronwall lemma approach to the Ulam-Hyers-Rassias stability of an integral equation, Nonlinear Analysis and Variational Problems (P.M. Pardalos et al. (eds.)), 147 Springer Optimization and Its Applications, New York, Volume 35, pp. 147-152
Cité par Sources :