Existence and Ulam-Hyers stability results for coincidence problems
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 2, p. 108-116.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Let $X, Y$ be two nonempty sets and $s, t : X \rightarrow Y$ be two single-valued operators. By definition, a solution of the coincidence problem for s and $t$ is a pair $(x^*; y^*) \in X \times Y$ such that
$s(x^*) = t(x^*) = y^*.$
It is well-known that a coincidence problem is, under appropriate conditions, equivalent to a fixed point problem for a single-valued operator generated by s and t. Using this approach, we will present some existence, uniqueness and Ulam - Hyers stability theorems for the coincidence problem mentioned above. Some examples illustrating the main results of the paper are also given.
DOI : 10.22436/jnsa.006.02.06
Classification : 47H10, 54H25
Keywords: metric space, coincidence problem, singlevalued contraction, vector-valued metric, fixed point, Ulam-Hyers stability.

Mleşniţe, Oana 1

1 Department of Mathematics, Babeş-Bolyai University Cluj-Napoca, Kogălniceanu Street No.1, 400084, Cluj-Napoca, Romania
@article{JNSA_2013_6_2_a5,
     author = {Mle\c{s}ni\c{t}e, Oana},
     title = {Existence and {Ulam-Hyers} stability results for coincidence problems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {108-116},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2013},
     doi = {10.22436/jnsa.006.02.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.06/}
}
TY  - JOUR
AU  - Mleşniţe, Oana
TI  - Existence and Ulam-Hyers stability results for coincidence problems
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 108
EP  - 116
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.06/
DO  - 10.22436/jnsa.006.02.06
LA  - en
ID  - JNSA_2013_6_2_a5
ER  - 
%0 Journal Article
%A Mleşniţe, Oana
%T Existence and Ulam-Hyers stability results for coincidence problems
%J Journal of nonlinear sciences and its applications
%D 2013
%P 108-116
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.06/
%R 10.22436/jnsa.006.02.06
%G en
%F JNSA_2013_6_2_a5
Mleşniţe, Oana. Existence and Ulam-Hyers stability results for coincidence problems. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 2, p. 108-116. doi : 10.22436/jnsa.006.02.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.06/

[1] Bota, M.; A. Petruşel Ulam-Hyers stability for operatorial equations, Analele Univ. Al.I. Cuza Iaşi, Volume 57 (2011), pp. 65-74

[2] A. Buică Coincidence Principles and Applications, Cluj University Press, in Romanian, 2001

[3] Castro, L. P.; Ramos, A. Hyers-Ulam-Rassias stability for a class of Volterra integral equations, Banach J. Math. Anal., Volume 3 (2009), pp. 36-43

[4] Goebel, K. A coincidence theorem, Bull. de L'Acad. Pol. des Sciences, Volume 16 (1968), pp. 733-735

[5] Jung, S.-M. A fixed point approach to the stability of a Volterra integral equation, Fixed Point Theory and Applications, Article ID 57064, Volume 2007 (2007), pp. 1-9

[6] Perov, A. I. On Cauchy problem for a system of ordinary differential equations, Pviblizhen. Met. Reshen. Differ. Uravn., Volume 2 (1964), pp. 115-134

[7] Petru, P. T.; Petruşel, A.; Yao, J. C. Ulam-Hyers stability for operatorial equations and inclusions via nonself operators, Taiwanese J. Math., Volume 15 (2011), pp. 2195-2212

[8] Rus, I. A. Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, Volume 10 (2009), pp. 305-320

[9] Rus, I. A. Ulam stability of ordinary differential equations, Studia Univ. Babeş-Bolyai Math., Volume 54 (2009), pp. 125-133

[10] Rus, I. A. Gronwall lemma approach to the Ulam-Hyers-Rassias stability of an integral equation, Nonlinear Analysis and Variational Problems (P.M. Pardalos et al. (eds.)), 147 Springer Optimization and Its Applications, New York, Volume 35, pp. 147-152

Cité par Sources :