An abstract point of view on iterative approximation schemes of fixed points for multivalued operators
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 2, p. 97-107.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we will present an abstract point of view on iterative approximation schemes of fixed points for multivalued operators. More precisely, we suppose that the algorithms are convergent and we will study the impact of this hypothesis in the theory of operatorial inclusiosns: data dependence, stability and Gronwall type lemmas. Some open problems are also presented.
DOI : 10.22436/jnsa.006.02.05
Classification : 47H10, 54H25
Keywords: multivalued operator, fixed point, strict fixed point, iterative scheme, multivalued Picard operator, multivalued weakly Picard operator.

Petruşel, Adrian 1 ; Rus, Ioan A. 1

1 Department of Mathematics, Babeş-Bolyai University, Kogalniceanu Street no. 1, 400084 Cluj-Napoca, Romania
@article{JNSA_2013_6_2_a4,
     author = {Petru\c{s}el, Adrian and Rus, Ioan A.},
     title = {An abstract point of view on iterative approximation schemes of fixed points for multivalued operators},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {97-107},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2013},
     doi = {10.22436/jnsa.006.02.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.05/}
}
TY  - JOUR
AU  - Petruşel, Adrian
AU  - Rus, Ioan A.
TI  - An abstract point of view on iterative approximation schemes of fixed points for multivalued operators
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 97
EP  - 107
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.05/
DO  - 10.22436/jnsa.006.02.05
LA  - en
ID  - JNSA_2013_6_2_a4
ER  - 
%0 Journal Article
%A Petruşel, Adrian
%A Rus, Ioan A.
%T An abstract point of view on iterative approximation schemes of fixed points for multivalued operators
%J Journal of nonlinear sciences and its applications
%D 2013
%P 97-107
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.05/
%R 10.22436/jnsa.006.02.05
%G en
%F JNSA_2013_6_2_a4
Petruşel, Adrian; Rus, Ioan A. An abstract point of view on iterative approximation schemes of fixed points for multivalued operators. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 2, p. 97-107. doi : 10.22436/jnsa.006.02.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.05/

[1] Górniewicz, J. Andres and L.; Problems, Topological Fixed Point Principles for Boundary Value; Publ., Kluwer Acad.; Dordrecht; 2003. ,

[2] Cellina, J.-P. Aubin and A.; Inclusions, Differential; Verlag, Springer; Berlin; 1984. ,

[3] Berinde, V.; Points, Iterative Approximations of Fixed; Verlag, Springer; Berlin; 2007. ,

[4] Blumenthal, [4] L.M.; Geometry, Theory and Applications of Distance; Press, Oxford University; 1953. ,

[5] Heikkilä, S. Carl and S.; Applications, Fixed Point Theory in Ordered Sets and; Springer; Berlin; 2011. ,

[6] Tan, [6] S.S. Chang and K.-K.; type, Iteration processes for approximating fixed points of operators by monotone; Soc., Bull. Austral. Math.; 57(1998); 433-445.

[7] Chidume, C.; Iterations, Geometric Properties of Banach Spaces and Nonlinear; Verlag, Springer; Berlin; [, 2009. ,

[8] jr., 8] H. Covitz and S.B. Nadler; spaces, Multivalued contraction mappings in generalized metric; Math., Israel J.; 8(1970); 5-11.

[9] Espínola, R.; Petruşel, A.; spaces, Existence and data dependence of fixed points for multivalued operators on gauge; Appl., J. Math. Anal.; 309(2005); 420-432.

[10] Liu, [10] Y. Feng and S.; spaces, Fixed point theorems for multivalued increasing operators in partial ordered; Math., Soochow J.; 30(2004); No.4; 461-469.

[11] Fréchet, M.; abstraits, Les espaces; Gauthier-Villars; Paris; 1928. ,

[12] Guţu, [12] V. Glăvan and V.; Shadowing and stability in set-valued dynamics (Preprint). ,

[13] Górniewicz, L.; Mappings, Topological Fixed Point Theory of Multivalued; Publ., Kluwer Acad.; Dordrecht; 1999. ,

[14] Schroeck, [14] S. Gudder and F.; convexity, Generalized; 11(1980), SIAM J. Math. Anal.; 984-1001.

[15] Hu, S.; Papageorgiou, N. S.; Analysis, Handbook of Multivalued; II, Vol. I and; Publ., Kluwer Acad.; Dordrecht; 1997 and 1999. ,

[16] Jachymski, [16] J.R.; principle, Fixed point theorems in metric and uniform spaces via the Knaster-Tarski; Anal., Nonlinear; No.2, 32(1998); 225-233.

[17] Kirk, M.A. Khamsi and W.A.; Theory, An Introduction to Metric Spaces and Fixed Point; Mathematics, Pure and Applied; Wiley-Interscience; York, New; [, 2001. ,

[18] (Editors), 18] W.A. Kirk and B. Sims; Theory, Handbook of Metric Fixed Point; Publ., Kluwer Acad.; Dordrecht; 2001. ,

[19] jr., S.B. Nadler; mappings, Multivalued contraction; Math., Pacific J.; 30(1969); 475-488.

[20] Neammanee, [20] K.; Kaewkhao, A.; mappings, On multivalued weak contraction; Research, J. Math.; 3(2011); 2, No.; 151-156.

[21] Palmer, K.; Applications, Shadowing in Dynamical Systems. Theory and; Publ., Kluwer Acad.; Dordrecht; 2000. ,

[22] Panyanak, [22] B.; spaces, Mann and Ishikawa iterative processes for multivalued mappings in Banach; Appl., Comput. Math.; 54(2007); 6, No.; 872-877.

[23] Petruşel, A.; points, Starshaped and fixed; Theory, Seminar on Fixed Point; Univ., Babes-Bolyai; 1987; 19-24.

[24] Petruşel, [24] A.; Inclusions, Operatorial; Science, House of the Book of; Cluj-Napoca; 2002. ,

[25] Petruşel, A.; applications, Multivalued weakly Picard operators and; Jpn., Sci. Math.; 59(2004); 169-202.

[26] Rus, [26] A. Petruşel and I.A.; operators, Multivalued Picard and weakly Picard; Applications, Proc. 6th International Conference on Fixed Point Theory and; Valencia; Spain; 19-26, July; Fuster, 2003 (E. Llorens; Falset, J. Garcia; Sims-Eds.), B.; Publ., Yokohama; 2004; 207-226.

[27] Rus, A. Petruşel and I.A.; operators, The theory of a metric fixed point theorem for multivalued; Applications, Proc. 9th International Conference on Fixed Point Theory and its; Changhua; Taiwan; 16-22, July; 2009; Lin, (L.J.; Petruşel, A.; Xu-Eds.), H.K.; 2010, Yokohama Publ.; 161-175.

[28] Petruşel, [28] A. Petruşel and G.; operators, Multivalued Picard; Anal., J. Nonlinear Convex; 13(2012); 1, No.; 157-171.

[29] Petruşel, A.; Yao, I.A. Rus and J.-C.; problems, Well-posedness in the generalized sense of the fixed point; Math., Taiwanese J.; 11(2007); No.3; 903-914.

[30] Petruşel, [30] G. Petruşel and A.; graphic, Existence and data dependence of the strict fixed points for multivalued \(\delta\)-contractions on; Appl., Pure Math.; 17(2006); 3-4, No.; 413-418.

[31] Pilyugin, S.Yu.; Systems, Shadowing in Dynamical; Verlag, Springer; Berlin; 1999. ,

[32] Puttasantiphat, [32] T.; spaces, Mann and Ishikawa iteration schemes for multivalued mappings in CAT(0); Sci., Appl. Math.; 4(2010); No.61; 3005-3018.

[33] Reich, S.; functions, Fixed point of contractive; Ital., Boll. Un. Mat.; 5(1972); 26-42.

[34] Zaslavski, [34] S. Reich and A.J.; mappings, Convergence of inexact iterative schemes for nonexpansive set-valued; Appl., Fixed Point Theory; 2010(2010); 518243, Article ID; 10 p.

[35] Rus, I.A.; applications, Picard operators and; Jpn., Sci. Math.; 58(2003); 191-219.

[36] Rus, [36] I.A.; relevance, The theory of a metrical fixed point theorem: theoretical and applicative; Theory, Fixed Point; 9(2008); 541-559.

[37] Rus, I.A.; theory, Strict fixed point; Theory, Fixed Point; 4(2003); 177-183.

[38] Rus, [38] I.A.; Applications, Generalized Contractions and; Press, Cluj University; Cluj-Napoca; 2001. ,

[39] Rus, I.A.; Theory, Fixed Point Structure; Press, Cluj University; Cluj-Napoca; 2006. ,

[40] Rus, [40] I.A.; equations, An abstract point of view on iterative approximation of fixed points: impact on the theory of fixed point; Theory, Fixed Point; 13(2012); No.1; 179-192.

[41] Rus, I.A.; Sîntămărian, A. Petruşel and A.; operators, Data dependence of the fixed point set of some multivalued weakly Picard; Anal., Nonlinear; 52(2003); 8, no.; 1947-1959.

[42] Rus, [42] I.A.; Petruşel, A. Petruşel and G.; Theory, Fixed Point; Press, Cluj University; 2008. ,

[43] Zegeye, N. Shahzad and H.; spaces, On Mann and Ishikawa schemes for multivalued maps in Banach; Anal., Nonlinear; 71(2009); 838-844.

[44] Sîntămărian, [44] A.; mappings, Metrical strict fixed point theorems for multivalued; Theory, Sem. on Fixed Point; 1997; 27-30.

[45] Singh, S.L.; Hashim, C. Bhatnagar and A.M.; operators, Round-off stability of Picard iterative procedure for multivalued; Forum, Nonlinear Anal.; 10(2005); 1, No.; 13-19.

[46] Smithson, [46] R.E.; multifunction, Fixed point of order preserving; Soc., Proc. Amer. Math.; 28(1971); 304-310.

[47] Cho, Y. Song and Y.J.; mappings, Some notes on Ishikawa iteration for multi-valued; Soc., Bull. Korean Math.; 48(2011); 3, No.; 575-584.

[48] Wang, [48] Y. Song and H.; spaces, Convergence of iterative algorithms for multivalued mappings in Banach; Appl., Nonlinear Anal. Theory Methods; 70(2009); 4-A, No.; 1547-1556.

[49] Takahashi, W.; Applications, Nonlinear Functional Analysis. Fixed Point Theory and its; Publishers, Yokohama; Yokohama; 2000. ,

[50] Takahashi, [50] W.; I, A convexity in metric spaces and nonexpansive mapping; Rep., Kodai Math. Sem.; 22(1970); 142-149.

[51] Yuan, E. Tarafdar and G.X.-Z.; principle, Set-valued contraction mapping; Letters, Applied Math.; 8(1995); 79-81.

[52] Yuan, [52] G.X.-Z.; Analysis, KKM Theory and Applications in Nonlinear; Dekker, Marcel; York, New; 1999. ,

Cité par Sources :