[1] Górniewicz, J. Andres and L.; Problems, Topological Fixed Point Principles for Boundary Value; Publ., Kluwer Acad.; Dordrecht; 2003. ,
[2] Cellina, J.-P. Aubin and A.; Inclusions, Differential; Verlag, Springer; Berlin; 1984. ,
[3] Berinde, V.; Points, Iterative Approximations of Fixed; Verlag, Springer; Berlin; 2007. ,
[4] Blumenthal, [4] L.M.; Geometry, Theory and Applications of Distance; Press, Oxford University; 1953. ,
[5] Heikkilä, S. Carl and S.; Applications, Fixed Point Theory in Ordered Sets and; Springer; Berlin; 2011. ,
[6] Tan, [6] S.S. Chang and K.-K.; type, Iteration processes for approximating fixed points of operators by monotone; Soc., Bull. Austral. Math.; 57(1998); 433-445.
[7] Chidume, C.; Iterations, Geometric Properties of Banach Spaces and Nonlinear; Verlag, Springer; Berlin; [, 2009. ,
[8] jr., 8] H. Covitz and S.B. Nadler; spaces, Multivalued contraction mappings in generalized metric; Math., Israel J.; 8(1970); 5-11.
[9] Espínola, R.; Petruşel, A.; spaces, Existence and data dependence of fixed points for multivalued operators on gauge; Appl., J. Math. Anal.; 309(2005); 420-432.
[10] Liu, [10] Y. Feng and S.; spaces, Fixed point theorems for multivalued increasing operators in partial ordered; Math., Soochow J.; 30(2004); No.4; 461-469.
[11] Fréchet, M.; abstraits, Les espaces; Gauthier-Villars; Paris; 1928. ,
[12] Guţu, [12] V. Glăvan and V.; Shadowing and stability in set-valued dynamics (Preprint). ,
[13] Górniewicz, L.; Mappings, Topological Fixed Point Theory of Multivalued; Publ., Kluwer Acad.; Dordrecht; 1999. ,
[14] Schroeck, [14] S. Gudder and F.; convexity, Generalized; 11(1980), SIAM J. Math. Anal.; 984-1001.
[15] Hu, S.; Papageorgiou, N. S.; Analysis, Handbook of Multivalued; II, Vol. I and; Publ., Kluwer Acad.; Dordrecht; 1997 and 1999. ,
[16] Jachymski, [16] J.R.; principle, Fixed point theorems in metric and uniform spaces via the Knaster-Tarski; Anal., Nonlinear; No.2, 32(1998); 225-233.
[17] Kirk, M.A. Khamsi and W.A.; Theory, An Introduction to Metric Spaces and Fixed Point; Mathematics, Pure and Applied; Wiley-Interscience; York, New; [, 2001. ,
[18] (Editors), 18] W.A. Kirk and B. Sims; Theory, Handbook of Metric Fixed Point; Publ., Kluwer Acad.; Dordrecht; 2001. ,
[19] jr., S.B. Nadler; mappings, Multivalued contraction; Math., Pacific J.; 30(1969); 475-488.
[20] Neammanee, [20] K.; Kaewkhao, A.; mappings, On multivalued weak contraction; Research, J. Math.; 3(2011); 2, No.; 151-156.
[21] Palmer, K.; Applications, Shadowing in Dynamical Systems. Theory and; Publ., Kluwer Acad.; Dordrecht; 2000. ,
[22] Panyanak, [22] B.; spaces, Mann and Ishikawa iterative processes for multivalued mappings in Banach; Appl., Comput. Math.; 54(2007); 6, No.; 872-877.
[23] Petruşel, A.; points, Starshaped and fixed; Theory, Seminar on Fixed Point; Univ., Babes-Bolyai; 1987; 19-24.
[24] Petruşel, [24] A.; Inclusions, Operatorial; Science, House of the Book of; Cluj-Napoca; 2002. ,
[25] Petruşel, A.; applications, Multivalued weakly Picard operators and; Jpn., Sci. Math.; 59(2004); 169-202.
[26] Rus, [26] A. Petruşel and I.A.; operators, Multivalued Picard and weakly Picard; Applications, Proc. 6th International Conference on Fixed Point Theory and; Valencia; Spain; 19-26, July; Fuster, 2003 (E. Llorens; Falset, J. Garcia; Sims-Eds.), B.; Publ., Yokohama; 2004; 207-226.
[27] Rus, A. Petruşel and I.A.; operators, The theory of a metric fixed point theorem for multivalued; Applications, Proc. 9th International Conference on Fixed Point Theory and its; Changhua; Taiwan; 16-22, July; 2009; Lin, (L.J.; Petruşel, A.; Xu-Eds.), H.K.; 2010, Yokohama Publ.; 161-175.
[28] Petruşel, [28] A. Petruşel and G.; operators, Multivalued Picard; Anal., J. Nonlinear Convex; 13(2012); 1, No.; 157-171.
[29] Petruşel, A.; Yao, I.A. Rus and J.-C.; problems, Well-posedness in the generalized sense of the fixed point; Math., Taiwanese J.; 11(2007); No.3; 903-914.
[30] Petruşel, [30] G. Petruşel and A.; graphic, Existence and data dependence of the strict fixed points for multivalued \(\delta\)-contractions on; Appl., Pure Math.; 17(2006); 3-4, No.; 413-418.
[31] Pilyugin, S.Yu.; Systems, Shadowing in Dynamical; Verlag, Springer; Berlin; 1999. ,
[32] Puttasantiphat, [32] T.; spaces, Mann and Ishikawa iteration schemes for multivalued mappings in CAT(0); Sci., Appl. Math.; 4(2010); No.61; 3005-3018.
[33] Reich, S.; functions, Fixed point of contractive; Ital., Boll. Un. Mat.; 5(1972); 26-42.
[34] Zaslavski, [34] S. Reich and A.J.; mappings, Convergence of inexact iterative schemes for nonexpansive set-valued; Appl., Fixed Point Theory; 2010(2010); 518243, Article ID; 10 p.
[35] Rus, I.A.; applications, Picard operators and; Jpn., Sci. Math.; 58(2003); 191-219.
[36] Rus, [36] I.A.; relevance, The theory of a metrical fixed point theorem: theoretical and applicative; Theory, Fixed Point; 9(2008); 541-559.
[37] Rus, I.A.; theory, Strict fixed point; Theory, Fixed Point; 4(2003); 177-183.
[38] Rus, [38] I.A.; Applications, Generalized Contractions and; Press, Cluj University; Cluj-Napoca; 2001. ,
[39] Rus, I.A.; Theory, Fixed Point Structure; Press, Cluj University; Cluj-Napoca; 2006. ,
[40] Rus, [40] I.A.; equations, An abstract point of view on iterative approximation of fixed points: impact on the theory of fixed point; Theory, Fixed Point; 13(2012); No.1; 179-192.
[41] Rus, I.A.; Sîntămărian, A. Petruşel and A.; operators, Data dependence of the fixed point set of some multivalued weakly Picard; Anal., Nonlinear; 52(2003); 8, no.; 1947-1959.
[42] Rus, [42] I.A.; Petruşel, A. Petruşel and G.; Theory, Fixed Point; Press, Cluj University; 2008. ,
[43] Zegeye, N. Shahzad and H.; spaces, On Mann and Ishikawa schemes for multivalued maps in Banach; Anal., Nonlinear; 71(2009); 838-844.
[44] Sîntămărian, [44] A.; mappings, Metrical strict fixed point theorems for multivalued; Theory, Sem. on Fixed Point; 1997; 27-30.
[45] Singh, S.L.; Hashim, C. Bhatnagar and A.M.; operators, Round-off stability of Picard iterative procedure for multivalued; Forum, Nonlinear Anal.; 10(2005); 1, No.; 13-19.
[46] Smithson, [46] R.E.; multifunction, Fixed point of order preserving; Soc., Proc. Amer. Math.; 28(1971); 304-310.
[47] Cho, Y. Song and Y.J.; mappings, Some notes on Ishikawa iteration for multi-valued; Soc., Bull. Korean Math.; 48(2011); 3, No.; 575-584.
[48] Wang, [48] Y. Song and H.; spaces, Convergence of iterative algorithms for multivalued mappings in Banach; Appl., Nonlinear Anal. Theory Methods; 70(2009); 4-A, No.; 1547-1556.
[49] Takahashi, W.; Applications, Nonlinear Functional Analysis. Fixed Point Theory and its; Publishers, Yokohama; Yokohama; 2000. ,
[50] Takahashi, [50] W.; I, A convexity in metric spaces and nonexpansive mapping; Rep., Kodai Math. Sem.; 22(1970); 142-149.
[51] Yuan, E. Tarafdar and G.X.-Z.; principle, Set-valued contraction mapping; Letters, Applied Math.; 8(1995); 79-81.
[52] Yuan, [52] G.X.-Z.; Analysis, KKM Theory and Applications in Nonlinear; Dekker, Marcel; York, New; 1999. ,