Uniform exponential stability for evolution families on the half-line
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 2, p. 68-73.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we give a characterization for the uniform exponential stability of evolution families $\{\Phi(t; t_0)\}_{t\geq t_0}$ on $\mathbb{R}_+$ that do not have an exponential growth, using the hypothesis that the pairs of function spaces $(L^1(X);L^\infty(X))$ and $(L^p(X);L^q(X)), (p; q) \neq (1;\infty)$, are admissible to the evolution families.
DOI : 10.22436/jnsa.006.02.02
Classification : 34D05, 34D09
Keywords: Evolution family, admissibility, uniform exponential stability.

Preda, Petre 1 ; Mureşan, Raluca 1

1 Department of Mathematics, West University of Timişoara, 4, Blvd. Vasile Parvan, Timişoara, Romania
@article{JNSA_2013_6_2_a1,
     author = {Preda, Petre and Mure\c{s}an, Raluca},
     title = {Uniform exponential stability for evolution families on the half-line},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {68-73},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2013},
     doi = {10.22436/jnsa.006.02.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.02/}
}
TY  - JOUR
AU  - Preda, Petre
AU  - Mureşan, Raluca
TI  - Uniform exponential stability for evolution families on the half-line
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 68
EP  - 73
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.02/
DO  - 10.22436/jnsa.006.02.02
LA  - en
ID  - JNSA_2013_6_2_a1
ER  - 
%0 Journal Article
%A Preda, Petre
%A Mureşan, Raluca
%T Uniform exponential stability for evolution families on the half-line
%J Journal of nonlinear sciences and its applications
%D 2013
%P 68-73
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.02/
%R 10.22436/jnsa.006.02.02
%G en
%F JNSA_2013_6_2_a1
Preda, Petre; Mureşan, Raluca. Uniform exponential stability for evolution families on the half-line. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 2, p. 68-73. doi : 10.22436/jnsa.006.02.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.02/

[1] Barreira, L.; Valls, C. Admissibility for nonuniform exponential contractions , J. Diff. Eq., Volume 249 (2010), pp. 2889-2904

[2] Barreira, L.; Valls, C. Regularity of center manifolds under nonuniform hyperbolicity, Discrete and Continuous Dynamical Systems, Volume 30 (2011), pp. 55-76

[3] Chicone, C.; Latushkin, Y. Evolution Semigroups in Dynamical Systems and Diferential Equations, Math. Surveys Monogr., vol. 70, Amer. Math. Soc., Providence, RI, 1999

[4] Coppel, W. A. Dichotomies in Stability Theory, Lect. Notes Math., vol. 629, Springer-Verlag, New-York, 1978

[5] Daleckij, J. L.; Krein, M. G. Stability of Diferential Equations in Banach Space, Amer. Math. Soc., Providence, RI, 1974

[6] R. Datko Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal., Volume 3 (1972), pp. 428-445

[7] Hartman, P. Ordinary Differential Equations, Wiley, New-York, London, Sydney, 1964

[8] Levitan, B. M.; Zhikov, V. V. Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, Cambridge, 1982

[9] Massera, J. L.; Schäffer, J. J. Linear Diferential Equations and Function Spaces, Academic Press, New York, 1966

[10] Minh, N. van; N. T. Huy Exponential dichotomy of evolution equations and admissibility of function spaces on the half line, J. Funct. Anal., Volume 235 (2006), pp. 330-354

[11] Minh, N. van; Huy, N. T. Characterizations of dichotomies of evolution equations on the half-line, J. Math. Anal. Appl., Volume 261 (2001), pp. 28-44

[12] Minh, N. van; Rägiger, F.; R. Schnaubelt Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half-line, Integr. Equ. Oper. Theory, Volume 32 (1998), pp. 332-353

[13] Perron, O. Die stabilitätsfrage bei diferentialgeighungen, Math. Z., Volume 32 (1930), pp. 703-728

[14] Preda, P.; Pogan, A.; C. Preda Admissibility and exponential dichotomy of evolutionary processes on half-line, Rend. Sem. Mat. Univ. Pol. Torino, Volume 61 (2003), pp. 461-473

[15] Preda, P.; Pogan, A.; Preda, C. Schffer spaces anduniform exponential stability of linear skew-product semi ows, J. Diff. Eq., Volume 2005 (212), pp. 191-207

[16] Preda, P.; Pogan, A.; Preda, C. Schffer spaces and exponential dichotomy for evolutionary processes, J. Diff. Eq., Volume 230 (2006), pp. 378-391

Cité par Sources :