Voir la notice de l'article provenant de la source International Scientific Research Publications
Preda, Petre 1 ; Mureşan, Raluca 1
@article{JNSA_2013_6_2_a1, author = {Preda, Petre and Mure\c{s}an, Raluca}, title = {Uniform exponential stability for evolution families on the half-line}, journal = {Journal of nonlinear sciences and its applications}, pages = {68-73}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2013}, doi = {10.22436/jnsa.006.02.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.02/} }
TY - JOUR AU - Preda, Petre AU - Mureşan, Raluca TI - Uniform exponential stability for evolution families on the half-line JO - Journal of nonlinear sciences and its applications PY - 2013 SP - 68 EP - 73 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.02/ DO - 10.22436/jnsa.006.02.02 LA - en ID - JNSA_2013_6_2_a1 ER -
%0 Journal Article %A Preda, Petre %A Mureşan, Raluca %T Uniform exponential stability for evolution families on the half-line %J Journal of nonlinear sciences and its applications %D 2013 %P 68-73 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.02/ %R 10.22436/jnsa.006.02.02 %G en %F JNSA_2013_6_2_a1
Preda, Petre; Mureşan, Raluca. Uniform exponential stability for evolution families on the half-line. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 2, p. 68-73. doi : 10.22436/jnsa.006.02.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.02/
[1] Admissibility for nonuniform exponential contractions , J. Diff. Eq., Volume 249 (2010), pp. 2889-2904
[2] Regularity of center manifolds under nonuniform hyperbolicity, Discrete and Continuous Dynamical Systems, Volume 30 (2011), pp. 55-76
[3] Evolution Semigroups in Dynamical Systems and Diferential Equations, Math. Surveys Monogr., vol. 70, Amer. Math. Soc., Providence, RI, 1999
[4] Dichotomies in Stability Theory, Lect. Notes Math., vol. 629, Springer-Verlag, New-York, 1978
[5] Stability of Diferential Equations in Banach Space, Amer. Math. Soc., Providence, RI, 1974
[6] Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal., Volume 3 (1972), pp. 428-445
[7] Ordinary Differential Equations, Wiley, New-York, London, Sydney, 1964
[8] Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, Cambridge, 1982
[9] Linear Diferential Equations and Function Spaces, Academic Press, New York, 1966
[10] Exponential dichotomy of evolution equations and admissibility of function spaces on the half line, J. Funct. Anal., Volume 235 (2006), pp. 330-354
[11] Characterizations of dichotomies of evolution equations on the half-line, J. Math. Anal. Appl., Volume 261 (2001), pp. 28-44
[12] Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half-line, Integr. Equ. Oper. Theory, Volume 32 (1998), pp. 332-353
[13] Die stabilitätsfrage bei diferentialgeighungen, Math. Z., Volume 32 (1930), pp. 703-728
[14] Admissibility and exponential dichotomy of evolutionary processes on half-line, Rend. Sem. Mat. Univ. Pol. Torino, Volume 61 (2003), pp. 461-473
[15] Schffer spaces anduniform exponential stability of linear skew-product semi ows, J. Diff. Eq., Volume 2005 (212), pp. 191-207
[16] Schffer spaces and exponential dichotomy for evolutionary processes, J. Diff. Eq., Volume 230 (2006), pp. 378-391
Cité par Sources :