Voir la notice de l'article provenant de la source International Scientific Research Publications
Cădariu, Liviu 1 ; Găvruţa, Laura 1 ; Găvruţa, Paşc 1
@article{JNSA_2013_6_2_a0, author = {C\u{a}dariu, Liviu and G\u{a}vru\c{t}a, Laura and G\u{a}vru\c{t}a, Pa\c{s}c}, title = {On the stability of an affine functional equation}, journal = {Journal of nonlinear sciences and its applications}, pages = {60-67}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2013}, doi = {10.22436/jnsa.006.02.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.01/} }
TY - JOUR AU - Cădariu, Liviu AU - Găvruţa, Laura AU - Găvruţa, Paşc TI - On the stability of an affine functional equation JO - Journal of nonlinear sciences and its applications PY - 2013 SP - 60 EP - 67 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.01/ DO - 10.22436/jnsa.006.02.01 LA - en ID - JNSA_2013_6_2_a0 ER -
%0 Journal Article %A Cădariu, Liviu %A Găvruţa, Laura %A Găvruţa, Paşc %T On the stability of an affine functional equation %J Journal of nonlinear sciences and its applications %D 2013 %P 60-67 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.01/ %R 10.22436/jnsa.006.02.01 %G en %F JNSA_2013_6_2_a0
Cădariu, Liviu; Găvruţa, Laura; Găvruţa, Paşc. On the stability of an affine functional equation. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 2, p. 60-67. doi : 10.22436/jnsa.006.02.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.01/
[1] On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66
[2] The stability of certain functional equations, Proc. AMS, Volume 112(3) (1991), pp. 729-732
[3] A fixed point approach to the stability of functional equations in non-Archimedean metric spaces, Nonlinear Analysis - TMA, Volume 74 (2011), pp. 6861-6867
[4] Weighted space method for the stability of some nonlinear equations, Appl. Anal. Discrete Math., Volume 6 (2012), pp. 126-139
[5] Fixed points and generalized Hyers-Ulam stability, Abstr. Appl. Anal. Article ID 712743, Volume 2012 (2012), pp. 1-10
[6] Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure and Appl. Math., Art. 4, Volume 4(1) (2003)
[7] On the stability of the Cauchy functional equation: a fixed points approach, Iteration theory (ECIT '02), (J. Sousa Ramos, D. Gronau, C. Mira, L. Reich, A. N. Sharkovsky - Eds.)Grazer Math. Ber., Volume 346 (2004), pp. 43-52
[8] Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory and Applications, Article ID 749392, Volume 2008 (2008), pp. 1-15
[9] A general fixed point method for the stability of Cauchy functional equation, in Functional Equations in Mathematical Analysis, Th. M. Rassias, J. Brzdek (Eds.), Series Springer Optimization and Its Applications 52, , 2011
[10] A general fixed point method for the stability of the monomial functional equation , Carpathian J. Math., Volume 28 (2012), pp. 25-36
[11] On the Hyers-Ulam Stability of Quadratic Functional Equations, 3(3), , 2002
[12] Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, London , Singapore Hong Kong, 2002
[13] A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 305-309
[14] An existence and stability theorem for a class of functional equations , Stochastica, Volume 4 (1980), pp. 23-30
[15] Hyers-Ulam stability of functional equations in several variables, Aeq. Math., Volume 50 (1995), p. 143-90
[16] Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations, J. Math. Anal. Appl. , Volume 295(1) (2004), pp. 127-133
[17] On stability of additive mappings, Internat. J. Math. Math. Sci. , Volume 14 (1991), pp. 431-434
[18] Matkowski contractions and Hyers-Ulam stability, Bul. Şt. Univ. ''Politehnica'' Timişoara, Seria Mat.-Fiz., Volume 53(67) (2008), pp. 32-35
[19] A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436
[20] On a problem of G. Isac and Th. M. Rassias concerning the stability of mappings, J. Math. Anal. Appl., Volume 261 (2001), pp. 543-553
[21] A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear Anal. Appl., Volume 1 (2010), pp. 11-18
[22] On the stability of the linear functional equation, Prod. Natl. Acad. Sci. USA, Volume 27 (1941), pp. 222-224
[23] Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998
[24] Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Series Springer Optimization and Its Applications, Springer, 2011
[25] The Hyers-Ulam stability for two functional equations in a single variable, Banach J. Math. Anal. Appl., Volume 2 (2008), pp. 48-52
[26] The fixed point alternative and the stability of functional equations, Fixed Point Theory, Volume 4 (2003), pp. 91-96
[27] On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300
[28] On the stability of functional equations and a problem of Ulam, Acta Appl. Math., Volume 62 (2000), pp. 23-130
[29] Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964
Cité par Sources :