On the stability of an affine functional equation
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 2, p. 60-67.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we obtain the general solution and we prove the generalized Hyers-Ulam stability for an affine functional equation.
DOI : 10.22436/jnsa.006.02.01
Classification : 39B82, 39B72, 39B62, 47H10
Keywords: Generalized Ulam-Hyers stability, affine functional equation, direct method, fixed points

Cădariu, Liviu 1 ; Găvruţa, Laura 1 ; Găvruţa, Paşc 1

1 Department of Mathematics, ''Politehnica'' University of Timişoara, Piaţa Victoriei no.2, 300006 Timişoara, Romania
@article{JNSA_2013_6_2_a0,
     author = {C\u{a}dariu, Liviu and G\u{a}vru\c{t}a, Laura and G\u{a}vru\c{t}a, Pa\c{s}c},
     title = {On the stability of an affine functional equation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {60-67},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2013},
     doi = {10.22436/jnsa.006.02.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.01/}
}
TY  - JOUR
AU  - Cădariu, Liviu
AU  - Găvruţa, Laura
AU  - Găvruţa, Paşc
TI  - On the stability of an affine functional equation
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 60
EP  - 67
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.01/
DO  - 10.22436/jnsa.006.02.01
LA  - en
ID  - JNSA_2013_6_2_a0
ER  - 
%0 Journal Article
%A Cădariu, Liviu
%A Găvruţa, Laura
%A Găvruţa, Paşc
%T On the stability of an affine functional equation
%J Journal of nonlinear sciences and its applications
%D 2013
%P 60-67
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.01/
%R 10.22436/jnsa.006.02.01
%G en
%F JNSA_2013_6_2_a0
Cădariu, Liviu; Găvruţa, Laura; Găvruţa, Paşc. On the stability of an affine functional equation. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 2, p. 60-67. doi : 10.22436/jnsa.006.02.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.02.01/

[1] T. Aoki On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66

[2] J. A. Baker The stability of certain functional equations, Proc. AMS, Volume 112(3) (1991), pp. 729-732

[3] Brzdęk, J.; Ciepliński, K. A fixed point approach to the stability of functional equations in non-Archimedean metric spaces, Nonlinear Analysis - TMA, Volume 74 (2011), pp. 6861-6867

[4] Cădariu, L.; Găvruţa, L.; P. Găvruţa Weighted space method for the stability of some nonlinear equations, Appl. Anal. Discrete Math., Volume 6 (2012), pp. 126-139

[5] Cădariu, L.; Găvruţa, L.; Găvruţa, P. Fixed points and generalized Hyers-Ulam stability, Abstr. Appl. Anal. Article ID 712743, Volume 2012 (2012), pp. 1-10

[6] Cădariu, L.; Radu, V. Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure and Appl. Math., Art. 4, Volume 4(1) (2003)

[7] Cădariu, L.; Radu, V. On the stability of the Cauchy functional equation: a fixed points approach, Iteration theory (ECIT '02), (J. Sousa Ramos, D. Gronau, C. Mira, L. Reich, A. N. Sharkovsky - Eds.)Grazer Math. Ber., Volume 346 (2004), pp. 43-52

[8] L., L. Cădariu; Radu, V. Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory and Applications, Article ID 749392, Volume 2008 (2008), pp. 1-15

[9] L., L. Cădariu; Radu, V. A general fixed point method for the stability of Cauchy functional equation, in Functional Equations in Mathematical Analysis, Th. M. Rassias, J. Brzdek (Eds.), Series Springer Optimization and Its Applications 52, , 2011

[10] L., L. Cădariu; V. Radu A general fixed point method for the stability of the monomial functional equation , Carpathian J. Math., Volume 28 (2012), pp. 25-36

[11] Chang, I.-S.; Kim, H.-M. On the Hyers-Ulam Stability of Quadratic Functional Equations, 3(3), , 2002

[12] Czerwik, S. Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, London , Singapore Hong Kong, 2002

[13] Diaz, J. B.; Margolis, B. A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 305-309

[14] Forti, G. L. An existence and stability theorem for a class of functional equations , Stochastica, Volume 4 (1980), pp. 23-30

[15] G. L. Forti Hyers-Ulam stability of functional equations in several variables, Aeq. Math., Volume 50 (1995), p. 143-90

[16] Forti, G. L. Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations, J. Math. Anal. Appl. , Volume 295(1) (2004), pp. 127-133

[17] Gajda, Z. On stability of additive mappings, Internat. J. Math. Math. Sci. , Volume 14 (1991), pp. 431-434

[18] Găvruţa, L. Matkowski contractions and Hyers-Ulam stability, Bul. Şt. Univ. ''Politehnica'' Timişoara, Seria Mat.-Fiz., Volume 53(67) (2008), pp. 32-35

[19] Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436

[20] Găvruţa, P. On a problem of G. Isac and Th. M. Rassias concerning the stability of mappings, J. Math. Anal. Appl., Volume 261 (2001), pp. 543-553

[21] Găvruţa, P.; Găvruţa, L. A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear Anal. Appl., Volume 1 (2010), pp. 11-18

[22] Hyers, D. H. On the stability of the linear functional equation, Prod. Natl. Acad. Sci. USA, Volume 27 (1941), pp. 222-224

[23] Hyers, D. H.; G., G. Isac; Rassias, Th. M. Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998

[24] Jung, S.-M. Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Series Springer Optimization and Its Applications, Springer, 2011

[25] D. Miheţ The Hyers-Ulam stability for two functional equations in a single variable, Banach J. Math. Anal. Appl., Volume 2 (2008), pp. 48-52

[26] Radu, V. The fixed point alternative and the stability of functional equations, Fixed Point Theory, Volume 4 (2003), pp. 91-96

[27] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300

[28] Rassias, Th. M. On the stability of functional equations and a problem of Ulam, Acta Appl. Math., Volume 62 (2000), pp. 23-130

[29] Ulam, S. M. Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964

Cité par Sources :