On the probabilistic stability of the monomial functional equation
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 1, p. 51-59.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Using the fixed point method, we establish a generalized Ulam - Hyers stability result for the monomial functional equation in the setting of complete random $p$-normed spaces. As a particular case, we obtain a new stability theorem for monomial functional equations in $\beta$-normed spaces.
DOI : 10.22436/jnsa.006.01.08
Classification : 39B82, 54E40
Keywords: Random p-normed space, Hyers - Ulam - Rassias stability, monomial functional equation.

Zaharia, Claudia 1

1 Department of Mathematics, West University of Timisoara, Bd. V. Parvan 4, 300223, Timisoara, Romania
@article{JNSA_2013_6_1_a7,
     author = {Zaharia, Claudia},
     title = {On the probabilistic stability of the monomial functional equation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {51-59},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2013},
     doi = {10.22436/jnsa.006.01.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.08/}
}
TY  - JOUR
AU  - Zaharia, Claudia
TI  - On the probabilistic stability of the monomial functional equation
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 51
EP  - 59
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.08/
DO  - 10.22436/jnsa.006.01.08
LA  - en
ID  - JNSA_2013_6_1_a7
ER  - 
%0 Journal Article
%A Zaharia, Claudia
%T On the probabilistic stability of the monomial functional equation
%J Journal of nonlinear sciences and its applications
%D 2013
%P 51-59
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.08/
%R 10.22436/jnsa.006.01.08
%G en
%F JNSA_2013_6_1_a7
Zaharia, Claudia. On the probabilistic stability of the monomial functional equation. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 1, p. 51-59. doi : 10.22436/jnsa.006.01.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.08/

[1] Baker, M. Albert and J. A. Functions with bounded n-th differences, Ann. Polonici Math., Volume 43 (1983), pp. 93-103

[2] T. Aoki On the stability of the linear transformation in Banach spaces , J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66

[3] Cădariu, L.; Radu, V. Remarks on the stability of monomial functional equations, Fixed Point Theory , Volume 8 (2007), pp. 201-218

[4] Cădariu, L.; Radu, V. Fixed points and generalized stability for functional equations in abstract spaces, J. Math. Inequal., Volume 3 (2009), pp. 463-473

[5] P. Găvruţa A generalization of the Hyers - Ulam - Rassias stability of approximately additive mappings, J. Math. Anal. Appl. , Volume 184 (1994), pp. 431-436

[6] A. Gilányi A characterization of monomial functions , Aequationes Math. , Volume 54 (1997), pp. 289-307

[7] Gilányi, A. Hyers - Ulam stability of monomial functional equations on a general domain, Proc. Natl. Acad. Sci. USA , Volume 96 (1999), pp. 10588-10590

[8] A. Gilányi On the stability of monomial functional equations, Publ. Math. Debrecen, Volume 56 (2000), pp. 201-212

[9] I. Goleţ Random p-normed spaces and applications to random functions, Istambul Univ. Fen Fak., Mat. Fiz. Astro. Derg., Volume 1 (2004-2005), pp. 31-42

[10] Hyers, D. H. On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, Volume 27 (1941), pp. 222-224

[11] C. F. K. Jung On generalized complete metric spaces, Bull. Amer. Math. Soc. , Volume 75 (1969), pp. 113-116

[12] D. Miheţ The fixed point method for fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, Volume 160 (2009), pp. 1663-1667

[13] Miheţ, D.; Radu, V. On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., Volume 343 (2008), pp. 567-572

[14] Miheţ, D. The probabilistic stability for a functional equation in a single variable, Acta Mathematica Hungarica, Volume 123 (2009), pp. 249-256

[15] Miheţ, D.; Saadati, R.; Vaezpour, S. M. The stability of an additive functional equation in Menger probabilistic \(\varphi\)-normed spaces, Math. Slovaca , Volume 61 (2011), pp. 817-826

[16] Mirmostafaee, A. K.; Moslehian, M. S. Fuzzy versions of the Hyers - Ulam - Rassias theorem, Fuzzy Sets and Systems, Volume 159 (2008), pp. 720-729

[17] Mirmostafaee, A. K.; Mirzavaziri, M.; Moslehian, M. S. Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, Volume 159 (2008), pp. 730-738

[18] Mirmostafaee, A. K. Stability of monomial functional equation in quasi normed spaces, Bull. Korean Math. Soc. , Volume 47 (2010), pp. 777-785

[19] A. K. Mirmostafaee Non-Archimedean stability of the monomial functional equations, Tamsui Oxford Journal of Mathematical Sciences, Volume 26 (2010), pp. 221-235

[20] Radu, V. The fixed point alternative and the stability of functional equations, Fixed Point Theory, Volume 4 (2003), pp. 91-96

[21] Th. M. Rassias On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300

[22] Ulam, S. M. Problems in Modern Mathematics, Chapter VI , Science Editions, Wiley, New York, 1964

[23] Zaharia, C.; D. Miheţ On the probabilistic stability of some functional equations, Carpathian Journal of Mathematics, , accepted

Cité par Sources :