Common coupled fixed point theorems for contractive mappings in fuzzy metric spaces
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 1, p. 35-40.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We prove some common coupled fixed point theorems for contractive mappings in fuzzy metric spaces under geometrically convergent t-norms.
DOI : 10.22436/jnsa.006.01.06
Classification : 54E70, 54H25
Keywords: Fuzzy metric space, g-convergent t-norm, coupled common fixed point.

Miheţ, Dorel 1

1 Department of Mathematics, West University of Timisoara, Bd. V. Parvan 4, 300223, Timisoara, Romania
@article{JNSA_2013_6_1_a5,
     author = {Mihe\c{t}, Dorel},
     title = {Common coupled fixed point theorems for contractive mappings in fuzzy metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {35-40},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2013},
     doi = {10.22436/jnsa.006.01.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.06/}
}
TY  - JOUR
AU  - Miheţ, Dorel
TI  - Common coupled fixed point theorems for contractive mappings in fuzzy metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 35
EP  - 40
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.06/
DO  - 10.22436/jnsa.006.01.06
LA  - en
ID  - JNSA_2013_6_1_a5
ER  - 
%0 Journal Article
%A Miheţ, Dorel
%T Common coupled fixed point theorems for contractive mappings in fuzzy metric spaces
%J Journal of nonlinear sciences and its applications
%D 2013
%P 35-40
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.06/
%R 10.22436/jnsa.006.01.06
%G en
%F JNSA_2013_6_1_a5
Miheţ, Dorel. Common coupled fixed point theorems for contractive mappings in fuzzy metric spaces. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 1, p. 35-40. doi : 10.22436/jnsa.006.01.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.06/

[1] Ćirić, L.; Miheţ, D.; Saadati, R. Monotone generalized contractions in partially ordered probabilistic metric spaces, Topology and its Applications , Volume 156 (2009), pp. 2838-2844

[2] Ćirić, L.; Agarwal, R.; Samet, B. Mixed monotone-generalized contractions in partially ordered probabilistic metric spaces, Fixed Point Theory and Applications , doi:10.1186/1687-1812-2011-56. , 2011

[3] Fang, J.-X. Common Fixed point theorems of compatible and weakly compatible maps in Menger spaces, Nonlinear Analysis. Theory, Methods & Applications, Volume 71 (2009), pp. 1833-1843

[4] Hadžić, O.; Pap, E. Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, Dordrecht, 2001

[5] Hadžić, O.; Pap, E.; M. Budincević Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces , Kybernetika, Volume 38 (3) (2002), pp. 363-381

[6] Hu, Xin-Qi Common Coupled Fixed Point Theorems for Contractive Mappings in Fuzzy Metric Spaces, Fixed Point Theory and Applications , Article ID 363716, doi:10.1155/2011/363716. , 2011

[7] Hu, Xin-Qi; Ma, Xiao-Yan Coupled coincidence point theorems under contractive conditions in partially ordered probabilistic metric spaces, Nonlinear Analysis. Theory, Methods & Applications, Volume 74 (2011), pp. 6451-6458

[8] Kramosil, I.; Michalek, J. Fuzzy metrics and statistical metric spaces, Kybernetika , Volume 11 (1975), pp. 336-344

[9] Lakshmikantham, V.; Ćirić, L. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis. Theory, Methods & Applications, Volume 70 (2009), pp. 4341-4349

[10] Sedghi, S.; Altun, I.; Shobe, N. Coupled fixed point theorems for contractions in fuzzy metric spaces, Nonlinear Analysis. Theory, Methods & Applications, Volume 72 (2010), pp. 1298-1304

[11] Zhu, Xing-Hua; Xiao, Jian-Zhong Note on ''Coupled fixed point theorems for contractions in fuzzy metric spaces'', Nonlinear Analysis. Theory, Methods & Applications, Volume 74 (2011), pp. 5475-5479

Cité par Sources :