Voir la notice de l'article provenant de la source International Scientific Research Publications
Lazăr, Tania 1 ; Petruşel, Gabriela 2
@article{JNSA_2013_6_1_a4, author = {Laz\u{a}r, Tania and Petru\c{s}el, Gabriela}, title = {Fixed points for non-self operators in gauge spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {29-34}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2013}, doi = {10.22436/jnsa.006.01.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.05/} }
TY - JOUR AU - Lazăr, Tania AU - Petruşel, Gabriela TI - Fixed points for non-self operators in gauge spaces JO - Journal of nonlinear sciences and its applications PY - 2013 SP - 29 EP - 34 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.05/ DO - 10.22436/jnsa.006.01.05 LA - en ID - JNSA_2013_6_1_a4 ER -
%0 Journal Article %A Lazăr, Tania %A Petruşel, Gabriela %T Fixed points for non-self operators in gauge spaces %J Journal of nonlinear sciences and its applications %D 2013 %P 29-34 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.05/ %R 10.22436/jnsa.006.01.05 %G en %F JNSA_2013_6_1_a4
Lazăr, Tania; Petruşel, Gabriela. Fixed points for non-self operators in gauge spaces. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 1, p. 29-34. doi : 10.22436/jnsa.006.01.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.05/
[1] Generalized contractions in partially ordered metric spaces, Applicable Anal., Volume 87 (2008), pp. 109-116
[2] A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal. TMA, Volume 72 (2010), pp. 2238-2242
[3] Contractive-like mapping principles in ordered metric spaces and application to ordinary differential equations, Fixed Point Theory Appl., Article ID 916064, Volume 2010 (2010), pp. 1-14
[4] Fixed-point results for generalized contractions on ordered gauge spaces with applications, Fixed Point Theory Appl., Article ID 979586, Volume 2011 (2011), pp. 1-10
[5] Topology, Allyn & Bacon, Boston, 1966
[6] Les espaces abstraits, Gauthier-Villars, Paris, 1928
[7] Fixed point and continuation results for contractions in metric and gauge spaces, Banach Center Publ., Volume 77 (2007), pp. 89-114
[8] Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. Theory, Methods & Applications, Volume 71 (2009), pp. 3403-3410
[9] Fixed point theorems for monotone generalized contractions in partially ordered metric spaces and applications to integral equations, J. Convex Analysis, Volume 19 (2012), pp. 853-864
[10] Equivalent conditions for generalized contractions on (ordered) metric spaces , Nonlinear Anal. TMA, Volume 74 (2011), pp. 768-774
[11] Monotone generalized nonlinear contractions and fixed point theorems in ordered metric spaces, Math. Computer Modelling, Volume 54 (2011), pp. 712-720
[12] Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order , Volume 22 (2005), pp. 223-239
[13] Fixed point theorem theorems in ordered abstract sets, Proc. Amer. Math. Soc., Volume 135 (2007), pp. 2505-2517
[14] Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations , Acta Math. Sinica-English Series, Volume 23 (2007), pp. 2205-2212
[15] Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl. , Volume 341 (2008), pp. 1241-1252
[16] Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. , Volume 134 (2006), pp. 411-418
[17] Fixed point results for multivalued contractions on ordered gauge spaces, Central Eurropean J. Math. , Volume 7 (2009), pp. 520-528
[18] Strict fixed point results for multivalued contractions on gauge spaces, Fixed Point Theory, Volume 11 (2010), pp. 119-124
[19] A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. , Volume 132 (2004), pp. 1435-1443
[20] The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory , Volume 9 (2008), pp. 541-559
[21] Fixed Point Theory, Cluj University Press, Cluj-Napoca, 2008
[22] Monotone generalized weak contractions in partially ordered metric spaces , Fixed Point Theory, Volume 11 (2010), pp. 375-382
Cité par Sources :