Fixed points for non-self operators in gauge spaces
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 1, p. 29-34.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of this article is to present some local fixed point results for generalized contractions on (ordered) complete gauge space. As a consequence, a continuation theorem is also given. Our theorems generalize and extend some recent results in the literature.
DOI : 10.22436/jnsa.006.01.05
Classification : 47H10, 54H25
Keywords: gauge space, generalized contraction, fixed point, ordered gauge space, continuation theorem.

Lazăr, Tania 1 ; Petruşel, Gabriela 2

1 Department of Mathematics, Technical University of Cluj-Napoca, Memorandumului Street no. 28, 400114, Cluj-Napoca, Romania
2 Department of Business, Babeş-Bolyai University, Horia Street no. 7, 400174 Cluj-Napoca, Romania
@article{JNSA_2013_6_1_a4,
     author = {Laz\u{a}r, Tania and Petru\c{s}el, Gabriela},
     title = {Fixed points for non-self operators in gauge spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {29-34},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2013},
     doi = {10.22436/jnsa.006.01.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.05/}
}
TY  - JOUR
AU  - Lazăr, Tania
AU  - Petruşel, Gabriela
TI  - Fixed points for non-self operators in gauge spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 29
EP  - 34
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.05/
DO  - 10.22436/jnsa.006.01.05
LA  - en
ID  - JNSA_2013_6_1_a4
ER  - 
%0 Journal Article
%A Lazăr, Tania
%A Petruşel, Gabriela
%T Fixed points for non-self operators in gauge spaces
%J Journal of nonlinear sciences and its applications
%D 2013
%P 29-34
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.05/
%R 10.22436/jnsa.006.01.05
%G en
%F JNSA_2013_6_1_a4
Lazăr, Tania; Petruşel, Gabriela. Fixed points for non-self operators in gauge spaces. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 1, p. 29-34. doi : 10.22436/jnsa.006.01.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.05/

[1] Agarwal, R. P.; El-Gebeily, M. A.; O'Regan, D. Generalized contractions in partially ordered metric spaces, Applicable Anal., Volume 87 (2008), pp. 109-116

[2] Amini-Harandi, A.; H. Emami A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal. TMA, Volume 72 (2010), pp. 2238-2242

[3] Caballero, J.; Harjani, J.; Sadarangani, K. Contractive-like mapping principles in ordered metric spaces and application to ordinary differential equations, Fixed Point Theory Appl., Article ID 916064, Volume 2010 (2010), pp. 1-14

[4] Chifu, C.; Petruşel, G. Fixed-point results for generalized contractions on ordered gauge spaces with applications, Fixed Point Theory Appl., Article ID 979586, Volume 2011 (2011), pp. 1-10

[5] Dugundji, J. Topology, Allyn & Bacon, Boston, 1966

[6] M. Fréchet Les espaces abstraits, Gauthier-Villars, Paris, 1928

[7] Frigon, M. Fixed point and continuation results for contractions in metric and gauge spaces, Banach Center Publ., Volume 77 (2007), pp. 89-114

[8] Harjani, J.; Sadarangani, K. Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. Theory, Methods & Applications, Volume 71 (2009), pp. 3403-3410

[9] Harjani, J.; Sadarangani, K. Fixed point theorems for monotone generalized contractions in partially ordered metric spaces and applications to integral equations, J. Convex Analysis, Volume 19 (2012), pp. 853-864

[10] Jachymski, J. Equivalent conditions for generalized contractions on (ordered) metric spaces , Nonlinear Anal. TMA, Volume 74 (2011), pp. 768-774

[11] Nashine, H. K.; Samet, B.; C. Vetro Monotone generalized nonlinear contractions and fixed point theorems in ordered metric spaces, Math. Computer Modelling, Volume 54 (2011), pp. 712-720

[12] Nieto, J. J.; Rodríguez-López, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order , Volume 22 (2005), pp. 223-239

[13] Nieto, J. J.; Pouso, R. L.; Rodríguez-López, R. Fixed point theorem theorems in ordered abstract sets, Proc. Amer. Math. Soc., Volume 135 (2007), pp. 2505-2517

[14] Nieto, J. J.; Rodríguez-López, R. Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations , Acta Math. Sinica-English Series, Volume 23 (2007), pp. 2205-2212

[15] O'Regan, D.; Petruşel, A. Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl. , Volume 341 (2008), pp. 1241-1252

[16] Petruşel, A.; Rus, I. A. Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. , Volume 134 (2006), pp. 411-418

[17] Petruşel, G. Fixed point results for multivalued contractions on ordered gauge spaces, Central Eurropean J. Math. , Volume 7 (2009), pp. 520-528

[18] Petruşel, G.; Luca, I. Strict fixed point results for multivalued contractions on gauge spaces, Fixed Point Theory, Volume 11 (2010), pp. 119-124

[19] Ran, A. C. M.; Reurings, M. C. A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. , Volume 132 (2004), pp. 1435-1443

[20] Rus, I. A. The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory , Volume 9 (2008), pp. 541-559

[21] Rus, I. A.; Petruşel, A.; Petruşel, G. Fixed Point Theory, Cluj University Press, Cluj-Napoca, 2008

[22] Saadati, R.; Vaezpour, S. M. Monotone generalized weak contractions in partially ordered metric spaces , Fixed Point Theory, Volume 11 (2010), pp. 375-382

Cité par Sources :