Convergence results for solutions of a first-order differential equation
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 1, p. 18-28.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We consider the first order differential problem:
$ (P_n) \begin{cases} u'(t) = f_n(t, u(t)),\,\,\,\,\, \texttt{for almost every} \quad t \in [0, 1],\\ u(0) = 0. \end{cases} $
Under certain conditions on the functions $f_n$, the problem $(P_n)$ admits a unique solution $u_n \in W^{1;1}([0; 1];E)$. In this paper, we propose to study the limit behavior of sequences $(u_n)_{n\in \mathbb{N}}$ and $(u'_n)_{n\in \mathbb{N}}$, when the sequence $(f_n)_{n\in \mathbb{N}}$ is subject to different growing conditions.
DOI : 10.22436/jnsa.006.01.04
Classification : 28A20, 28A33, 46E30, 46N10
Keywords: Tight sets, Jordan finite-tight sets, Young measure, fiber product, Prohorov's theorem.

Florescu, Liviu C. 1

1 Faculty of Mathematics, ''Al. I. Cuza'' University, Carol I, 11, 700506, Iaşi, Romania
@article{JNSA_2013_6_1_a3,
     author = {Florescu, Liviu C.},
     title = {Convergence results for solutions of a first-order differential equation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {18-28},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2013},
     doi = {10.22436/jnsa.006.01.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.04/}
}
TY  - JOUR
AU  - Florescu, Liviu C.
TI  - Convergence results for solutions of a first-order differential equation
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 18
EP  - 28
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.04/
DO  - 10.22436/jnsa.006.01.04
LA  - en
ID  - JNSA_2013_6_1_a3
ER  - 
%0 Journal Article
%A Florescu, Liviu C.
%T Convergence results for solutions of a first-order differential equation
%J Journal of nonlinear sciences and its applications
%D 2013
%P 18-28
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.04/
%R 10.22436/jnsa.006.01.04
%G en
%F JNSA_2013_6_1_a3
Florescu, Liviu C. Convergence results for solutions of a first-order differential equation. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 1, p. 18-28. doi : 10.22436/jnsa.006.01.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.04/

[1] Azzam, D. L.; Castaing, Ch.; Thibault, L. Three boundary value problems for second order differential inclusions in Banach spaces, Control Cybernet. , Volume 31 (2002), pp. 659-693

[2] Castaing, Ch.; Fitte, P. Raynaud de On the fiber product of Young measures with application to a control problem with measures, Adv. Math. Econ., Volume 6 (2004), pp. 1-38

[3] Castaing, Ch.; Fitte, P. Raynaud de; Valadier, M. Young measures on topological spaces , With applications in control theory and probability theory, Kluwer Academic Publ., Dordrecht, Boston, London, 2004

[4] Castaing, Ch.; Fitte, P. Raynaud de; Salvadori, A. Some variational convergence results for a class of evolution inclusions of second order using Young measures, Adv. Math. Econ. , Volume 7 (2005), pp. 1-32

[5] Hoffmann-Jørgensen, J. Convergence in law of random elements and random sets, High dimensional probability (Oberwolfach, 1996), 151-189, Progress in Probability no. 43, Birkhäuser, Basel, 1998

[6] Florescu, L. C.; Godet-Thobie, C. A version of biting lemma for unbounded sequences in \(L^1\) with applications, Mathematical Analysis and Applications, 58-73, AIP Conference Proceedings, New York, 2006

[7] Florescu, L. C. Finite-tight sets , Central European Journal of Mathematics, Volume 5 (2007), pp. 619-638

[8] Florescu, L. C. Existence results in relaxed variational calculus, Analele Universităţii de Vest, Timişoara, Seria Matematică-Informatică XLV, Volume 1 (2007), pp. 231-244

[9] Florescu, L. C.; Godet-Thobie, C. Young Measures and Compactness in Measure Spaces, Walter de Gruyter, Berlin, Boston, 2012

[10] Valadier, M. A course on Young measures, Rend. Istit. Mat. Univ. Trieste XXVI, Supplemento (1994), pp. 349-394

Cité par Sources :