Voir la notice de l'article provenant de la source International Scientific Research Publications
$ (P_n) \begin{cases} u'(t) = f_n(t, u(t)),\,\,\,\,\, \texttt{for almost every} \quad t \in [0, 1],\\ u(0) = 0. \end{cases} $ |
Florescu, Liviu C. 1
@article{JNSA_2013_6_1_a3, author = {Florescu, Liviu C.}, title = {Convergence results for solutions of a first-order differential equation}, journal = {Journal of nonlinear sciences and its applications}, pages = {18-28}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2013}, doi = {10.22436/jnsa.006.01.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.04/} }
TY - JOUR AU - Florescu, Liviu C. TI - Convergence results for solutions of a first-order differential equation JO - Journal of nonlinear sciences and its applications PY - 2013 SP - 18 EP - 28 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.04/ DO - 10.22436/jnsa.006.01.04 LA - en ID - JNSA_2013_6_1_a3 ER -
%0 Journal Article %A Florescu, Liviu C. %T Convergence results for solutions of a first-order differential equation %J Journal of nonlinear sciences and its applications %D 2013 %P 18-28 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.04/ %R 10.22436/jnsa.006.01.04 %G en %F JNSA_2013_6_1_a3
Florescu, Liviu C. Convergence results for solutions of a first-order differential equation. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 1, p. 18-28. doi : 10.22436/jnsa.006.01.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.04/
[1] Three boundary value problems for second order differential inclusions in Banach spaces, Control Cybernet. , Volume 31 (2002), pp. 659-693
[2] On the fiber product of Young measures with application to a control problem with measures, Adv. Math. Econ., Volume 6 (2004), pp. 1-38
[3] Young measures on topological spaces , With applications in control theory and probability theory, Kluwer Academic Publ., Dordrecht, Boston, London, 2004
[4] Some variational convergence results for a class of evolution inclusions of second order using Young measures, Adv. Math. Econ. , Volume 7 (2005), pp. 1-32
[5] Convergence in law of random elements and random sets, High dimensional probability (Oberwolfach, 1996), 151-189, Progress in Probability no. 43, Birkhäuser, Basel, 1998
[6] A version of biting lemma for unbounded sequences in \(L^1\) with applications, Mathematical Analysis and Applications, 58-73, AIP Conference Proceedings, New York, 2006
[7] Finite-tight sets , Central European Journal of Mathematics, Volume 5 (2007), pp. 619-638
[8] Existence results in relaxed variational calculus, Analele Universităţii de Vest, Timişoara, Seria Matematică-Informatică XLV, Volume 1 (2007), pp. 231-244
[9] Young Measures and Compactness in Measure Spaces, Walter de Gruyter, Berlin, Boston, 2012
[10] A course on Young measures, Rend. Istit. Mat. Univ. Trieste XXVI, Supplemento (1994), pp. 349-394
Cité par Sources :