Convergence of iterative methods for solving random operator equations
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 1, p. 2-6.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We discuss the concept of probabilistic quasi-nonexpansive mappings in connection with the mappings of Nishiura. We also prove a result regarding the convergence of the sequence of successive approximations for probabilistic quasi-nonexpansive mappings.
DOI : 10.22436/jnsa.006.01.02
Classification : 60B05, 47H10, 47H40
Keywords: Probabilistic quasi-nonexpansive mapping, iterative method, fixed point.

Bocşan, Gheorghe 1

1 Department of Mathematics, West University of Timişoara, Bd. V. Parvan 4, 300223, Timişoara, Romania
@article{JNSA_2013_6_1_a1,
     author = {Boc\c{s}an, Gheorghe},
     title = {Convergence of iterative methods for solving random operator equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2-6},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2013},
     doi = {10.22436/jnsa.006.01.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.02/}
}
TY  - JOUR
AU  - Bocşan, Gheorghe
TI  - Convergence of iterative methods for solving random operator equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 2
EP  - 6
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.02/
DO  - 10.22436/jnsa.006.01.02
LA  - en
ID  - JNSA_2013_6_1_a1
ER  - 
%0 Journal Article
%A Bocşan, Gheorghe
%T Convergence of iterative methods for solving random operator equations
%J Journal of nonlinear sciences and its applications
%D 2013
%P 2-6
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.02/
%R 10.22436/jnsa.006.01.02
%G en
%F JNSA_2013_6_1_a1
Bocşan, Gheorghe. Convergence of iterative methods for solving random operator equations. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 1, p. 2-6. doi : 10.22436/jnsa.006.01.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.01.02/

[1] Gh. Bocşan On random operators on separable Banach spaces, Sem. on Probab. Theory Appl. , Univ. Timişoara 38, 1978

[2] Constantin, Gh.; Istrăţescu, I. Elements of probabilistic analysis with applications, Mathematics and its Applica- tions (East European Series), 36, Kluwer Academic Publishers, Dordrecht, 1989

[3] Nishiura, E. Constructive methods in probabilistic metric spaces, Fundamenta Mathematicae, Volume 67 (1970), pp. 115-124

[4] Schweizer, B.; Sklar, A. Probabilistic Metric Spaces, North Holland Series in Probability and Applied Mathematics, New York, Amsterdam, Oxford, 1983

Cité par Sources :