Voir la notice de l'article provenant de la source International Scientific Research Publications
Kang, Shin Min 1 ; Cho , Sun Young 2 ; Qin, Xiaolong 3
@article{JNSA_2012_5_6_a6, author = {Kang, Shin Min and Cho , Sun Young and Qin, Xiaolong}, title = {Hybrid projection algorithms for approximating fixed points of asymptotically quasi-pseudocontractive mappings}, journal = {Journal of nonlinear sciences and its applications}, pages = {466-474}, publisher = {mathdoc}, volume = {5}, number = {6}, year = {2012}, doi = {10.22436/jnsa.005.06.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.07/} }
TY - JOUR AU - Kang, Shin Min AU - Cho , Sun Young AU - Qin, Xiaolong TI - Hybrid projection algorithms for approximating fixed points of asymptotically quasi-pseudocontractive mappings JO - Journal of nonlinear sciences and its applications PY - 2012 SP - 466 EP - 474 VL - 5 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.07/ DO - 10.22436/jnsa.005.06.07 LA - en ID - JNSA_2012_5_6_a6 ER -
%0 Journal Article %A Kang, Shin Min %A Cho , Sun Young %A Qin, Xiaolong %T Hybrid projection algorithms for approximating fixed points of asymptotically quasi-pseudocontractive mappings %J Journal of nonlinear sciences and its applications %D 2012 %P 466-474 %V 5 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.07/ %R 10.22436/jnsa.005.06.07 %G en %F JNSA_2012_5_6_a6
Kang, Shin Min; Cho , Sun Young; Qin, Xiaolong. Hybrid projection algorithms for approximating fixed points of asymptotically quasi-pseudocontractive mappings. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 6, p. 466-474. doi : 10.22436/jnsa.005.06.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.07/
[1] Iterative methods for strict pseudo-contractions in Hilbert spaces , Nonlinear Anal., Volume 67 (2007), pp. 2258-2271
[2] An example concerning fixed points, Israel J. Math., Volume 22 (1975), pp. 81-86
[3] A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., Volume 35 (1972), pp. 171-174
[4] Fixed points by a new iteration medthod, Proc. Amer. Math. Soc., Volume 44 (1974), pp. 147-150
[5] Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal., Volume 64 (2006), pp. 1140-1152
[6] Convergence of the modified Mann's iteration method for asymptotically strict pseudo-contractions, Nonlinear Anal., Volume 68 (2008), pp. 2828-2836
[7] Mean value methods in iteration, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 506-510
[8] Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl., Volume 329 (2007), pp. 336-346
[9] Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal., Volume 64 (2006), pp. 2400-2411
[10] Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups , J. Math. Anal. Appl., Volume 279 (2003), pp. 372-379
[11] A hybrid iterative scheme for asymptotically k-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., Volume 70 (2009), pp. 1902-1911
[12] Strong convergence theorems of fixed point for quasi-pseudo-contractions by hybrid projection algorithms, Fixed Point Theory, Volume 11 (2010), pp. 347-354
[13] Strong convergence theorems for asymptotically nonexpansive mappings by hybrid methods, Kyungpook Math. J., Volume 48 (2008), pp. 133-142
[14] Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., Volume 67 (1979), pp. 274-276
[15] Comments on two fixed point iteration methods, J. Math. Anal. Appl., Volume 56 (1976), pp. 741-750
[16] Iteration constrction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl., Volume 158 (1991), pp. 107-413
[17] Strong convergence theorems for asymptotically nonexpansive mappings and asymptotically nonexpansive semigroups, Fixed Point Theory Appl., Article ID 96215. , 2006
[18] Monotone CQ iteration processes for nonexpansive semigroups and maximal monotone operators , Nonlinear Anal., Volume 68 (2008), pp. 3657-3664
[19] Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., Volume 178 (1993), pp. 301-308
[20] Convergence theorems of fixed points for Lipschitz pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl., Volume 343 (2008), pp. 546-556
[21] Demiclosedness principle with applications for asymptotically pseudo-contractions in Hilbert spaces, Nonlinear Anal., Volume 70 (2009), pp. 3140-3145
[22] Strong convergence theorems for a family of quasi-asymptotic pseudo-contractions in Hilbert spaces, Nonlinear Anal., Volume 70 (2009), pp. 4047-4052
Cité par Sources :