Voir la notice de l'article provenant de la source International Scientific Research Publications
Zamani Eskandani, G. 1 ; Gavruta, P. 2
@article{JNSA_2012_5_6_a5, author = {Zamani Eskandani, G. and Gavruta, P.}, title = {Hyers-Ulam--Rassias stability of {Pexiderized} {Cauchy} functional equation in {2-Banach} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {459-465}, publisher = {mathdoc}, volume = {5}, number = {6}, year = {2012}, doi = {10.22436/jnsa.005.06.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.06/} }
TY - JOUR AU - Zamani Eskandani, G. AU - Gavruta, P. TI - Hyers-Ulam--Rassias stability of Pexiderized Cauchy functional equation in 2-Banach spaces JO - Journal of nonlinear sciences and its applications PY - 2012 SP - 459 EP - 465 VL - 5 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.06/ DO - 10.22436/jnsa.005.06.06 LA - en ID - JNSA_2012_5_6_a5 ER -
%0 Journal Article %A Zamani Eskandani, G. %A Gavruta, P. %T Hyers-Ulam--Rassias stability of Pexiderized Cauchy functional equation in 2-Banach spaces %J Journal of nonlinear sciences and its applications %D 2012 %P 459-465 %V 5 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.06/ %R 10.22436/jnsa.005.06.06 %G en %F JNSA_2012_5_6_a5
Zamani Eskandani, G.; Gavruta, P. Hyers-Ulam--Rassias stability of Pexiderized Cauchy functional equation in 2-Banach spaces. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 6, p. 459-465. doi : 10.22436/jnsa.005.06.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.06/
[1] On the stability of the linear transformation in Banach spaces, J. Math. Soc. , Volume 2 (1950), pp. 64-66
[2] Functional Equations in Several Variables, Cambridge University Press, , 1989
[3] Geometric Nonlinear Functional Analysis, vol. 1, Colloq. Publ., vol. 48, Amer. Math. Soc., Providence, RI, 2000
[4] Functional Equations and Inequalities in Several Variables, World Scientific, New Jersey, London, Singapore, Hong Kong, 2002
[5] On the Hyers-Ulam-Rassias stability of an additive functional equation in quasi-Banach spaces, J. Math. Anal. Appl. , Volume 345 (2008), pp. 405-409
[6] Generalized Hyers-Ulam stability for a general mixed functional equation in quasi-\(\beta\)-normed spaces, Mediterr. J. Math. , Volume 8 (2011), pp. 331-348
[7] Stability of mixed additive and quadratic functional equation in non-Archimedean Banach modules, Taiwanese J. Math. , Volume 14 (2010), pp. 1309-1324
[8] 2-metrische Rume und ihre topologische Struktur, Math. Nachr., Volume 26 (1963), pp. 115-148
[9] Lineare 2-normierte Rumen, Math. Nachr. , Volume 28 (1964), pp. 1-43
[10] Hyers-Ulam stability of frames in Hilbert spaces , Bul. Stiint. Univ. Politeh. Timis. Ser. Mat. Fiz., Volume 55(69), 2 (2010), pp. 60-77
[11] On a problem of G. Isac and Th. M. Rassias concerning the stability of mappings, J. Math. Anal. Appl. , Volume 261 (2001), pp. 543-553
[12] An answer to question of John M. Rassias concerning the stability of Cauchy equation, Advanced in Equation and Inequality (1999), pp. 67-71
[13] A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. , Volume 184 (1994), pp. 431-436
[14] On the stability of the linear functional equation, Proc. Nat. Acad. Sci. , Volume 27 (1941), pp. 222-224
[15] Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998
[16] Hyers-Ulam-Rassias Stability of Functional Equations in Mathimatical Analysis, Hadronic Press, Palm Harbor, 2001
[17] Asymptotic properties of isometries, J. Math. Anal. Appl. , Volume 276 (2002), pp. 642-653
[18] Quadratic functional equation and inner product spaces, Results Math., Volume 27 (1995), pp. 368-372
[19] Stability of a mixed additive and cubic functional equation in quasi-Banach spaces, J. Math. Anal. Appl. , Volume 342 (2008), pp. 1318-1331
[20] Homomorphisms between Poisson \(JC^*\)-algebras, Bull. Braz. Math. Soc. , Volume 36 (2005), pp. 79-97
[21] Approximate additive mappings in 2-Banach spaces and related topics, J. Math. Anal. Appl. , Volume 376 (2011), pp. 193-202
[22] On approximation of approximately linear mappings by linear mappings, Journal of Functional Analysis, Volume 46 (1982), pp. 126-130
[23] On approximation of approximately linear mappings by linear mappings, Bulletin des Sciences Mathematiques, Volume 108 (1984), pp. 445-446
[24] On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. , Volume 72 (1978), pp. 297-300
[25] On a modified Hyers-Ulam sequence, J. Math. Anal. Appl. , Volume 158 (1991), pp. 106-113
[26] On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. , Volume 251 (2000), pp. 264-284
[27] On the stability of functional equations and a problem of Ulam, Acta Appl. Math., Volume 62 (1) (2000), pp. 23-130
[28] On the behaviour of mappings which do not satisfy HyersUlam stability, Proc. Amer. Math. Soc. , Volume 114 (1992), pp. 989-993
[29] What is left of Hyers-Ulam stability?, J. Natural Geometry, Volume 1 (1992), pp. 65-69
[30] Ulam stability for the orthogonally general Euler-Lagrange type functional equation, Intern. J. Math. Stat., Volume 3 (A08) (2008), pp. 36-46
[31] Metric Linear Spaces, PWN-Polish Sci. Publ., Warszawa, Reidel, Dordrecht, 1984
[32] The stability of the quartic functional equation in various spaces, Comput. Math. Appl. , doi:10.1016/j.camwa.2010.07.034. , 2010
[33] A note on the On the stability of cubic mappings and quadratic mappings in random normed spaces, J. Inequal. Appl., Article ID 214530., 2009
[34] A Collection of the Mathematical Problems , Interscience Publ. New York (1960), pp. 431-436
Cité par Sources :