Solvability of infinite differential systems of the form $x' (t) =Tx(t)+b$ where $T$ is either of the triangles $C(\lambda)$ or $\overline{N}_ q$
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 6, p. 448-458.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we are interested in solving infinite linear systems of differential equations of the form $x' (t) = Tx (t) + b$ with $x(0) = x_0$; where $T$ is either the generalized Cesàro operator $C (\lambda)$ or the weighted mean matrix $\overline{N}_ q, x_0$ and b are two given infinite column matrices and $\lambda$ is a sequence with non-zero entries. We use a new method based on Laplace transformations to solve these systems.
DOI : 10.22436/jnsa.005.06.05
Classification : 40C05, 44A10
Keywords: Infinite linear systems of differential equations, systems of linear equations, Laplace operator.

Fares, Ali 1 ; Ayad, Ali 2

1 Équipe Algèbre et Combinatoire, EDST, Faculté des sciences-- Section 1, Université libanaise, Hadath, Liban
2 Équipe Algèbre et Combinatoire, EDST, Faculté des sciences--Section 1, Université libanaise, Hadath, Liban
@article{JNSA_2012_5_6_a4,
     author = {Fares, Ali and Ayad, Ali},
     title = {Solvability of infinite differential systems of the form \(x' (t) {=Tx(t)+b\)} where {\(T\)} is either of the triangles {\(C(\lambda)\)} or {\(\overline{N}_} q\)},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {448-458},
     publisher = {mathdoc},
     volume = {5},
     number = {6},
     year = {2012},
     doi = {10.22436/jnsa.005.06.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.05/}
}
TY  - JOUR
AU  - Fares, Ali
AU  - Ayad, Ali
TI  - Solvability of infinite differential systems of the form \(x' (t) =Tx(t)+b\) where \(T\) is either of the triangles \(C(\lambda)\) or \(\overline{N}_ q\)
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 448
EP  - 458
VL  - 5
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.05/
DO  - 10.22436/jnsa.005.06.05
LA  - en
ID  - JNSA_2012_5_6_a4
ER  - 
%0 Journal Article
%A Fares, Ali
%A Ayad, Ali
%T Solvability of infinite differential systems of the form \(x' (t) =Tx(t)+b\) where \(T\) is either of the triangles \(C(\lambda)\) or \(\overline{N}_ q\)
%J Journal of nonlinear sciences and its applications
%D 2012
%P 448-458
%V 5
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.05/
%R 10.22436/jnsa.005.06.05
%G en
%F JNSA_2012_5_6_a4
Fares, Ali; Ayad, Ali. Solvability of infinite differential systems of the form \(x' (t) =Tx(t)+b\) where \(T\) is either of the triangles \(C(\lambda)\) or \(\overline{N}_ q\). Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 6, p. 448-458. doi : 10.22436/jnsa.005.06.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.05/

[1] Malafosse, B. de An application of the infinite matrix theory to Mathieu equation, Comput. Math. Appl. , Volume 52 (2006), pp. 1439-1452

[2] Malafosse, B. de Recent results in the infinite matrix theory and application to Hill equation, Demonstratio Matematica , Volume 35 (2002), pp. 11-26

[3] Malafosse, B. de On the spectrum Cesàro operator in the space sr. Faculté des sciences de l'université d'Ankara, Series Al Mathematics and statistics, Volume 48 (1999), pp. 53-71

[4] Farés, A.; Ayad, A. Application of the infinite matrix theory to the solvability of a system of differential equations , J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 439-447

[5] Farés, A. Contribution à l'étude des opérateurs dans des espaces de suites et applications à l'optimisation et aux systèmes différentiels, PhD thesis, University of Le Havre, France , 2009

[6] Ince, E. L. Periodic solutions of a linear differential equation of the second order, Proc. Cam. Philo. Soc., Volume 23 (1926), pp. 44-46

[7] Issic, K. C-L.; P. N. Shivakumar On the eigenvalue problem \(-y'' + f(x)y = \lambda y\) on a semi infinite interval , Mathematical and Computer Modelling , Volume 46 (2007), pp. 316-330

[8] J. T. Okutoyi On the spectrum of \(C_1\) as operator on bv , Commun. Fac. Sci. Univ. Ank. Series A1, Volume 41 (1992), pp. 197-207

[9] Poincaré, H. Sur les déterminants d'ordre infini , Bull. Soc. Math. Fr., 14,87, 1886

[10] Reade, J. B. On the spectrum of the Cesàro operator, Bull. London Math., Soc., Volume 17 (1985), pp. 263-267

[11] Rosseto, B. Détermination des exposants de Floquet de l'équation de Hill d'ordre n , Thèse de Doctorat d'Etat Es-Sciences, Univ. Toulon, 1983

[12] Valeev, K. G. On Hill's method in the theory of linear differential equations with periodic coefficients , J. Appl. Math. Mech., transl. of Prikl. MAT., Volume 24 (1960), pp. 1493-1505

Cité par Sources :