Voir la notice de l'article provenant de la source International Scientific Research Publications
Fares, Ali 1 ; Ayad, Ali 2
@article{JNSA_2012_5_6_a4, author = {Fares, Ali and Ayad, Ali}, title = {Solvability of infinite differential systems of the form \(x' (t) {=Tx(t)+b\)} where {\(T\)} is either of the triangles {\(C(\lambda)\)} or {\(\overline{N}_} q\)}, journal = {Journal of nonlinear sciences and its applications}, pages = {448-458}, publisher = {mathdoc}, volume = {5}, number = {6}, year = {2012}, doi = {10.22436/jnsa.005.06.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.05/} }
TY - JOUR AU - Fares, Ali AU - Ayad, Ali TI - Solvability of infinite differential systems of the form \(x' (t) =Tx(t)+b\) where \(T\) is either of the triangles \(C(\lambda)\) or \(\overline{N}_ q\) JO - Journal of nonlinear sciences and its applications PY - 2012 SP - 448 EP - 458 VL - 5 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.05/ DO - 10.22436/jnsa.005.06.05 LA - en ID - JNSA_2012_5_6_a4 ER -
%0 Journal Article %A Fares, Ali %A Ayad, Ali %T Solvability of infinite differential systems of the form \(x' (t) =Tx(t)+b\) where \(T\) is either of the triangles \(C(\lambda)\) or \(\overline{N}_ q\) %J Journal of nonlinear sciences and its applications %D 2012 %P 448-458 %V 5 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.05/ %R 10.22436/jnsa.005.06.05 %G en %F JNSA_2012_5_6_a4
Fares, Ali; Ayad, Ali. Solvability of infinite differential systems of the form \(x' (t) =Tx(t)+b\) where \(T\) is either of the triangles \(C(\lambda)\) or \(\overline{N}_ q\). Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 6, p. 448-458. doi : 10.22436/jnsa.005.06.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.05/
[1] An application of the infinite matrix theory to Mathieu equation, Comput. Math. Appl. , Volume 52 (2006), pp. 1439-1452
[2] Recent results in the infinite matrix theory and application to Hill equation, Demonstratio Matematica , Volume 35 (2002), pp. 11-26
[3] On the spectrum Cesàro operator in the space sr. Faculté des sciences de l'université d'Ankara, Series Al Mathematics and statistics, Volume 48 (1999), pp. 53-71
[4] Application of the infinite matrix theory to the solvability of a system of differential equations , J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 439-447
[5] Contribution à l'étude des opérateurs dans des espaces de suites et applications à l'optimisation et aux systèmes différentiels, PhD thesis, University of Le Havre, France , 2009
[6] Periodic solutions of a linear differential equation of the second order, Proc. Cam. Philo. Soc., Volume 23 (1926), pp. 44-46
[7] On the eigenvalue problem \(-y'' + f(x)y = \lambda y\) on a semi infinite interval , Mathematical and Computer Modelling , Volume 46 (2007), pp. 316-330
[8] On the spectrum of \(C_1\) as operator on bv , Commun. Fac. Sci. Univ. Ank. Series A1, Volume 41 (1992), pp. 197-207
[9] Sur les déterminants d'ordre infini , Bull. Soc. Math. Fr., 14,87, 1886
[10] On the spectrum of the Cesàro operator, Bull. London Math., Soc., Volume 17 (1985), pp. 263-267
[11] Détermination des exposants de Floquet de l'équation de Hill d'ordre n , Thèse de Doctorat d'Etat Es-Sciences, Univ. Toulon, 1983
[12] On Hill's method in the theory of linear differential equations with periodic coefficients , J. Appl. Math. Mech., transl. of Prikl. MAT., Volume 24 (1960), pp. 1493-1505
Cité par Sources :