Application of the infinite matrix theory to the solvability of a system of differential equations
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 6, p. 439-447.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we deal with the solvability of the infinite system of differential equations $x'(t) = \Delta(\lambda)x(t) + b$ with $x(0) = a$, where $\Delta(\lambda)$ is the triangle defined by the infinite matrix whose the nonzero entries are $[\Delta(\lambda)]_{nn} = \lambda_n$ and $[\Delta(\lambda)]_{n,n-1} = \lambda_{n-1}$ for all $n \in \mathbb{N}$, for a given sequence $\lambda$ and $a, b$ are two given infinite column matrices. We use a new method based on Laplace transformations to solve this system.
DOI : 10.22436/jnsa.005.06.04
Classification : 40C05, 44A10
Keywords: Infinite linear systems of differential equations, systems of linear equations, Laplace operator.

Fares, Ali 1 ; Ayad, Ali 1

1 Équipe Algèbre et Combinatoire, EDST, Faculté des sciences--Section 1, Université libanaise, Hadath, Liban
@article{JNSA_2012_5_6_a3,
     author = {Fares, Ali and Ayad, Ali},
     title = {Application of the infinite matrix theory to the solvability of a system of differential equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {439-447},
     publisher = {mathdoc},
     volume = {5},
     number = {6},
     year = {2012},
     doi = {10.22436/jnsa.005.06.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.04/}
}
TY  - JOUR
AU  - Fares, Ali
AU  - Ayad, Ali
TI  - Application of the infinite matrix theory to the solvability of a system of differential equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 439
EP  - 447
VL  - 5
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.04/
DO  - 10.22436/jnsa.005.06.04
LA  - en
ID  - JNSA_2012_5_6_a3
ER  - 
%0 Journal Article
%A Fares, Ali
%A Ayad, Ali
%T Application of the infinite matrix theory to the solvability of a system of differential equations
%J Journal of nonlinear sciences and its applications
%D 2012
%P 439-447
%V 5
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.04/
%R 10.22436/jnsa.005.06.04
%G en
%F JNSA_2012_5_6_a3
Fares, Ali; Ayad, Ali. Application of the infinite matrix theory to the solvability of a system of differential equations. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 6, p. 439-447. doi : 10.22436/jnsa.005.06.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.04/

[1] Ince, E. L. Periodic solutions of a linear differential equation of the second order, Proc. Cam. Philo. Soc., Volume 23 (1926), pp. 44-46

[2] Issic, K. C-L.; P. N. Shivakumar On the eigenvalue problem \(-y''+f(x)y = \lambda y\) on a semi infinite interval, Mathematical and Computer Modelling, Volume 46 (2007), pp. 316-330

[3] Farés, A. Contribution à l'étude des opérateurs dans des espaces de suites et applications à l'optimisation et aux systèmes différentiels, PhD thesis, University of Le Havre, France , 2009

[4] Malafosse, B. de Recent results in the infinite matrix theory and application to Hill equation, Demonstratio Matematica, Volume 35 (2002), pp. 11-26

[5] Malafosse, B. de An application of the infinite matrix theory to Mathieu equation , Comput. Math. Appl. , Volume 52 (2006), pp. 1439-1452

[6] J. T. Okutoyi On the spectrum of \(C_1\) as operator on bv, Commun. Fac. Sci. Univ. Ank. Series A1, Volume 41 (1992), pp. 197-207

[7] H. Poincaré Sur les déterminants d'ordre infini, Bull. Soc. Math. Fr., 14,87, , 1886

[8] Reade, J. B. On the spectrum of the Cesàro operator, Bull. London Math., Soc. , Volume 17 (1985), pp. 263-267

[9] B. Rosseto Détermination des exposants de Floquet de l'équation de Hill d'ordre n, Thèse de Doctorat d'Etat Es-Sciences, Univ. Toulon, 1983

[10] Valeev, K. G. On Hill's method in the theory of linear differential equations with periodic coefficients, J. Appl. Math. Mech., transl. of Prikl. MAT., Volume 24 (1960), pp. 1493-1505

Cité par Sources :