Voir la notice de l'article provenant de la source International Scientific Research Publications
Fares, Ali 1 ; Ayad, Ali 1
@article{JNSA_2012_5_6_a3, author = {Fares, Ali and Ayad, Ali}, title = {Application of the infinite matrix theory to the solvability of a system of differential equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {439-447}, publisher = {mathdoc}, volume = {5}, number = {6}, year = {2012}, doi = {10.22436/jnsa.005.06.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.04/} }
TY - JOUR AU - Fares, Ali AU - Ayad, Ali TI - Application of the infinite matrix theory to the solvability of a system of differential equations JO - Journal of nonlinear sciences and its applications PY - 2012 SP - 439 EP - 447 VL - 5 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.04/ DO - 10.22436/jnsa.005.06.04 LA - en ID - JNSA_2012_5_6_a3 ER -
%0 Journal Article %A Fares, Ali %A Ayad, Ali %T Application of the infinite matrix theory to the solvability of a system of differential equations %J Journal of nonlinear sciences and its applications %D 2012 %P 439-447 %V 5 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.04/ %R 10.22436/jnsa.005.06.04 %G en %F JNSA_2012_5_6_a3
Fares, Ali; Ayad, Ali. Application of the infinite matrix theory to the solvability of a system of differential equations. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 6, p. 439-447. doi : 10.22436/jnsa.005.06.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.04/
[1] Periodic solutions of a linear differential equation of the second order, Proc. Cam. Philo. Soc., Volume 23 (1926), pp. 44-46
[2] On the eigenvalue problem \(-y''+f(x)y = \lambda y\) on a semi infinite interval, Mathematical and Computer Modelling, Volume 46 (2007), pp. 316-330
[3] Contribution à l'étude des opérateurs dans des espaces de suites et applications à l'optimisation et aux systèmes différentiels, PhD thesis, University of Le Havre, France , 2009
[4] Recent results in the infinite matrix theory and application to Hill equation, Demonstratio Matematica, Volume 35 (2002), pp. 11-26
[5] An application of the infinite matrix theory to Mathieu equation , Comput. Math. Appl. , Volume 52 (2006), pp. 1439-1452
[6] On the spectrum of \(C_1\) as operator on bv, Commun. Fac. Sci. Univ. Ank. Series A1, Volume 41 (1992), pp. 197-207
[7] Sur les déterminants d'ordre infini, Bull. Soc. Math. Fr., 14,87, , 1886
[8] On the spectrum of the Cesàro operator, Bull. London Math., Soc. , Volume 17 (1985), pp. 263-267
[9] Détermination des exposants de Floquet de l'équation de Hill d'ordre n, Thèse de Doctorat d'Etat Es-Sciences, Univ. Toulon, 1983
[10] On Hill's method in the theory of linear differential equations with periodic coefficients, J. Appl. Math. Mech., transl. of Prikl. MAT., Volume 24 (1960), pp. 1493-1505
Cité par Sources :