Voir la notice de l'article provenant de la source International Scientific Research Publications
Ayad, Ali 1 ; Fares, Ali 1 ; Ayyad, Youssef 1
@article{JNSA_2012_5_6_a2, author = {Ayad, Ali and Fares, Ali and Ayyad, Youssef}, title = {An algorithm for solving zero-dimensional parametric systems of polynomial homogeneous equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {426-438}, publisher = {mathdoc}, volume = {5}, number = {6}, year = {2012}, doi = {10.22436/jnsa.005.06.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.03/} }
TY - JOUR AU - Ayad, Ali AU - Fares, Ali AU - Ayyad, Youssef TI - An algorithm for solving zero-dimensional parametric systems of polynomial homogeneous equations JO - Journal of nonlinear sciences and its applications PY - 2012 SP - 426 EP - 438 VL - 5 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.03/ DO - 10.22436/jnsa.005.06.03 LA - en ID - JNSA_2012_5_6_a2 ER -
%0 Journal Article %A Ayad, Ali %A Fares, Ali %A Ayyad, Youssef %T An algorithm for solving zero-dimensional parametric systems of polynomial homogeneous equations %J Journal of nonlinear sciences and its applications %D 2012 %P 426-438 %V 5 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.03/ %R 10.22436/jnsa.005.06.03 %G en %F JNSA_2012_5_6_a2
Ayad, Ali; Fares, Ali; Ayyad, Youssef. An algorithm for solving zero-dimensional parametric systems of polynomial homogeneous equations. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 6, p. 426-438. doi : 10.22436/jnsa.005.06.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.03/
[1] Algorithms in real algebraic geometry, Springer, New York, 2003
[2] Computer Algebra: Symbolic and Algebraic Computation, Wien, Springer, 1983
[3] Gröbner Bases: An algorithmic method in polynomial ideal theory, , in Multidimensional System Theory (N.K.Bose et al.,Eds), Reidel, Dordrecht (1985), pp. 374-383
[4] Algorithm of polynomial complexity for factoring polynomials and finding the components of varieties in subexponential time, J. Sov. Math., Volume 34(4) (1986), pp. 1838-1882
[5] Subexponential-time solving systems of algebraic equations, I and II, LOMI Preprint, Leningrad (1983), pp. 9-83
[6] Ideals, Varieties and Algorithms, Second Edition, Springer , 1997
[7] Complexity of quantifier elimination in the theory of algebraically closed fields , LNCS, Volume 176 (1984), pp. 17-31
[8] Vandermonde Matrices, NP-Completeness, and Transversal Subspaces, Foundations of Computational Mathematics, Volume 3(4) (2003), pp. 421-427
[9] Sharp estimates for triangular sets , Proceedings ISSAC, , 2004
[10] Existence of 3 Positive Solutions of Systems from Chemistry, , , 2003
[11] Solving parametric algebraic systems, ISSAC, California USA (1992), pp. 335-341
[12] Solving some overdetermined polynomial systems, Proc. of the 1999 International Symposium on Symbolic and Algebraic Computation (Vancouver, BC), 1-8 (electronic), ACM, New York, 1999
[13] Lower bounds for diophantine approximations , J. of Pure and Applied Algebra, Volume 117, 118 (1997), pp. 277-317
[14] A Gröbner free alternative for polynomial system solving , Journal of Complexity, Volume 17 (1) (2001), pp. 154-211
[15] Parametric , Report Research, The FRISCO Consortium, 2000
[16] The ROMIN inverse geometric model and the dynamic evaluation method, In ''Computer Algebra in Industry, Problem Solving in Practice'', Edited by Arjeh M. Cohen, Wiley (1991), pp. 117-141
[17] Factorization of polynomials over a finite field and the solution of systems of algebraic equations, J. Sov. Math. , Volume 34 (4) (1986), pp. 1762-1803
[18] Complexity of quantifier elimination in the theory of ordinary differential equations , Lecture Notes Computer Science, Volume 378 (1989), pp. 11-25
[19] Bounds on numbers of vectors of multiplicities for polynomials which are easy to compute, Proc. ACM Intern. Conf. Symb and Algebraic Computations, Scotland (2000), pp. 137-145
[20] Constructing double-exponential number of vectors of multiplicities of solutions of polynomial systems , In Contemporary Math., AMS, Volume 286 (2001), pp. 115-120
[21] Definability and fast quantifier elimination in algebraically closed fields , Theor. Comput. Sci. , Volume 24 (3) (1983), pp. 239-277
[22] Deformation Techniques for efficient polynomial equation solving , Journal of Complexity, Volume 16 (2000), pp. 70-109
[23] Algèbre linéaire sur \(k[X_1,...,X_n]\) et élimination, Bull. Soc. Math. France, Volume 105 (1977), pp. 165-190
[24] Résolution des systèmes d'équations algébriques, Theo. Comput, Sci, Volume 15 (1981), pp. 77-110
[25] On the specification for solvers of polynomial systems, 5th Asian Symposium on Computers Mathematics -ASCM 2001, Matsuyama, Japan. Lecture Notes Series in Computing, 9, World Scientific (2001), pp. 66-75
[26] Solving parametric polynomial systems, Journal of Symbolic Computation, Volume 42 (6) (2007), pp. 636-667
[27] Resolution of polynomial systems, Computers Mathematics, Proceedings of the Fourth Asian Symposium (ASCM 2000). Xiao-Shan Gao, Dongming Wang ed. World Scientific (2000), pp. 1-8
[28] The Space Complexity of Elimination Theory: Upper bounds, Foundations of Computational Mathematics, FOCM'97, Springer Verlag (1997), pp. 267-276
[29] The Complexity of the Word Problems for Commutative Semigroups and Polynomial Ideals , Advances in Mathematics, Volume 46 (1982), pp. 305-329
[30] A new algorithm for discussing Gröbner basis with parameters, J. of Symb. Comp., Volume 33 (2002), pp. 183-208
[31] Complexity of the Resolution of Parametric Systems of Equations and Inequations, I, SSAC, Genova, Italy, 2006
[32] Solving Polynomial Equation Systems I , The Kronecker-Duval Philosophy, Encyclopedia of Mathematics and its Applications 88 , Cambridge University Press, 2003
[33] A System of Polynomial Equations and a Solution by an Unusual Method , SIGSAM Bulletin, Volume 18 (1) (1984), pp. 30-32
[34] Solving zero-dimensional polynomial systems through the rational univariate representation, Appl. Alg. in Eng. Comm. Comput., Volume 9 (5) (1999), pp. 433-461
[35] Computing Parametric Geometric Resolutions, Applicable Algebra in Engineering, Communication and Computing, Volume 13 (5) (2003), pp. 349-393
[36] Sur la résolution des systèmes polynomiaux à paramètres, Thèse de doctorat, École polytechnique, dffecembre , 2000
[37] Complexity results for triangular sets, Journal of Symbolic Computation , Volume 36 (3-4) (2003), pp. 555-594
[38] Modern algebra, Vol 2, , 1950
[39] Elimination Practice Software Tools and Applications, World Scientific Pub Co Inc, , 2004
[40] Comprehensive Gröbner bases, J. Symbolic Computation, Volume 14 (1991), pp. 1-29
[41] Solving parametric polynomial equations and inequalities by symbolic algorithms, MIP-9504, Universitat Passau, Januar 1995, in Proc. of the workshop ''Computer Algebra in Science and Engineering'', Bielefed, August 1994, World Scientific (1995), pp. 163-179
Cité par Sources :