Generalized order of entire monogenic functions of slow growth
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 6, p. 418-425.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In the present paper we study the generalized growth of entire monogenic functions having slow growth. The characterizations of generalized order of entire monogenic functions have been obtained in terms of their Taylor's series coefficients.
DOI : 10.22436/jnsa.005.06.02
Classification : 30G35, 30D15
Keywords: Clifford algebra, Clifford analysis, Generalized Cauchy-Riemann system, Entire monogenic function, Generalized order.

Kumar, Susheel 1 ; Bala, Kirandeep 1

1 Department of Mathematics, Central University of Himachal Pradesh, Dharamshala-176215, India
@article{JNSA_2012_5_6_a1,
     author = {Kumar, Susheel and Bala, Kirandeep},
     title = {Generalized order of entire monogenic functions of slow growth},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {418-425},
     publisher = {mathdoc},
     volume = {5},
     number = {6},
     year = {2012},
     doi = {10.22436/jnsa.005.06.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.02/}
}
TY  - JOUR
AU  - Kumar, Susheel
AU  - Bala, Kirandeep
TI  - Generalized order of entire monogenic functions of slow growth
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 418
EP  - 425
VL  - 5
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.02/
DO  - 10.22436/jnsa.005.06.02
LA  - en
ID  - JNSA_2012_5_6_a1
ER  - 
%0 Journal Article
%A Kumar, Susheel
%A Bala, Kirandeep
%T Generalized order of entire monogenic functions of slow growth
%J Journal of nonlinear sciences and its applications
%D 2012
%P 418-425
%V 5
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.02/
%R 10.22436/jnsa.005.06.02
%G en
%F JNSA_2012_5_6_a1
Kumar, Susheel; Bala, Kirandeep. Generalized order of entire monogenic functions of slow growth. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 6, p. 418-425. doi : 10.22436/jnsa.005.06.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.06.02/

[1] Constales, D.; Almeida, R. De; Krausshar, R. S. On the growth type of entire monogenic functions, Arch. Math. , Volume 88 (2007), pp. 153-163

[2] Constales, D.; Almeida, R. De; Krausshar, R. S. On the relation between the growth and the Taylor coefficients of entire solutions to the higher dimensional Cauchy-Riemann system in \(\mathbb{R}^{n+1}\), J. Math. Anal. App. , Volume 327 (2007), pp. 763-775

[3] Kapoor, G. P.; Nautiyal, A. Polynomial approximation of an entire function of slow growth, J. Approx. Theory, Volume 32 (1981), pp. 64-75

[4] Seremeta, M. N. On the connection between the growth of the maximum modulus of an entire function and the moduli of the coefficients of its power series expansion , Amer. Math. Soc. Trans., Volume 88 (1970), pp. 291-301

Cité par Sources :