Weak and strong convergence of an explicit iteration process for an asymptotically quasi-i-nonexpansive mapping in Banach spaces
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 5, p. 403-411.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we prove the weak and strong convergence of an explicit iterative process to a common fixed point of an asymptotically quasi-I-nonexpansive mapping T and an asymptotically quasi-nonexpansive mapping I, defined on a nonempty closed convex subset of a Banach space.
DOI : 10.22436/jnsa.005.05.09
Classification : 47H09, 47H10
Keywords: Asymptotically quasi-I-nonexpansive self-mappings, explicit iterations, common fixed point, uniformly convex Banach space.

Purtas, Yunus 1 ; Kiziltunc, Hukmi 2

1 Banking and Insurance Department, Ahmetli Vocational Higher School, Celal Bayar University, Manisa, Turkey
2 Department of Mathematics, Faculty of Science, Ataturk University, Erzurum, Turkey
@article{JNSA_2012_5_5_a8,
     author = {Purtas, Yunus and Kiziltunc, Hukmi},
     title = {Weak and strong convergence of an explicit iteration process for an asymptotically quasi-i-nonexpansive mapping in {Banach} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {403-411},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {2012},
     doi = {10.22436/jnsa.005.05.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.09/}
}
TY  - JOUR
AU  - Purtas, Yunus
AU  - Kiziltunc, Hukmi
TI  - Weak and strong convergence of an explicit iteration process for an asymptotically quasi-i-nonexpansive mapping in Banach spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 403
EP  - 411
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.09/
DO  - 10.22436/jnsa.005.05.09
LA  - en
ID  - JNSA_2012_5_5_a8
ER  - 
%0 Journal Article
%A Purtas, Yunus
%A Kiziltunc, Hukmi
%T Weak and strong convergence of an explicit iteration process for an asymptotically quasi-i-nonexpansive mapping in Banach spaces
%J Journal of nonlinear sciences and its applications
%D 2012
%P 403-411
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.09/
%R 10.22436/jnsa.005.05.09
%G en
%F JNSA_2012_5_5_a8
Purtas, Yunus; Kiziltunc, Hukmi. Weak and strong convergence of an explicit iteration process for an asymptotically quasi-i-nonexpansive mapping in Banach spaces. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 5, p. 403-411. doi : 10.22436/jnsa.005.05.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.09/

[1] Baillon, J. B. Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert, Comptes Rendus de l'Academie des Sciences de Paris, Volume Serie A 280 no. 22 (1975), pp. 1511-1514

[2] Pazy, A. On the asymptotic behavior of iterates of nonexpasive mappings in Hilbert space, Israel Journal of Mathematics, Volume 26 (1977), pp. 197-204

[3] F. E. Browder Nonexpansive nonlinear operators in a Banach space, Proceedings of the National Academy of Sciences of the United States of America, Volume 54 (1965), pp. 1041-1044

[4] Browder, F. E. Convergence of apporximants to fixed points of nonexpansive non-linear mappings in Banach spaces, Archive for Rational Mechanics and Analysis, Volume 24 (1967), pp. 82-90

[5] H. Kiziltunc; Ozdemir, M.; Akbulut, S. On common fixed points of two nonself nonexpansive mappings in Banach Spaces, Chiang Mai J. Sci., Volume 34 (2007), pp. 281-288

[6] Chidume, C. Geometric Properties of Banach Spaces and Nonlinear Iterations, vol. 1965 of Lecture Notes in Mathematics, Springer, London, 2009

[7] Diaz, J. B.; F. T. Metcalf On the structure of the set of subsequential limit points of seccessive approximations, Bulletin of the American Mathematical Society, Volume 73 (1967), pp. 516-519

[8] Khan, S. H. A two-step iterative process for two asymptotically quasi-nonexpansive mappings, World Academy of Science, Engineering and Technology, http://www.waset.org/journals/waset/ 1 , 2011

[9] Fukhar-ud-din, H.; Khan, S. H. Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications, J.Math.Anal.Appl., Volume 328 (2007), pp. 821-829

[10] Dotson, J. W. G. On the Mann iterative process, Transactions of the American Mathematical Society, Volume 149 (1970), pp. 65-73

[11] Ghosh, M. K.; Debnath, L. Convergence of Ishikawa iterates of quasi-nonexpansive mappings, Journal of Mathematical Analysis and Applications, Volume 2007 (1997), pp. 96-103

[12] Goebel, K.; Kirk, W. A. A fixed point theorem for asymptotically nonexpansive mappings, Proceeding of American Mathematical Society, Volume 35 (1972), pp. 171-174

[13] Liu, Q. Iterative sequences for asymptotically quasi-nonexpansive mappings, Journal of Mathematical Analysis and Applications, Volume 259 (2001), pp. 1-7

[14] Wittmann, R. Aproximation of fixed points of nonexpansive mappings, Archiv der Mathematik, Volume 58 (1992), pp. 486-491

[15] Reich, S. Strong convergence theorems for resolvents of accretive operators in Banach spaces, Journal of Mathematical Analysis and Applications, Volume 75 (1980), pp. 287-292

[16] Gornicki, J. Weak convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces, Commentations Mathematicae Universitatis Carolinae, Volume 30 (1989), pp. 249-252

[17] Schu, J. Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bulletin of the Australian Mathematical Society, Volume 43 (1991), pp. 153-159

[18] Shioji, N.; Takahashi, W. Strong convergence theorems for asymptotically nonexpansive semigroups in Hilbert spaces, Nonlinear Analysis: Theory, Methods & Applications, Volume 178 (1998), pp. 87-99

[19] Tan, K. K.; Xu, H. K. Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, Journal of Mathematical Analysis and Applications, Volume 178 (1993), pp. 301-308

[20] N. Shahzad Generalized I-nonexpansive maps and best approximations in Banach spaces, Demonstratio Mathematica, Volume 37 (2004), pp. 597-600

[21] Rohades, B. H.; Temir, S. Convergence theorems for I-nonexpansive mapping, International Journal of Mathematics and Mathematical Sciences, Volume 2006 (2006), pp. 1-4

[22] Temir, S. On the convergence theorems of implicit iteration process for a nite family of I-asymptotically nonex- pansive mappings, Journal of Computational and Applied Mathematics, Volume 225 (2009), pp. 398-405

[23] Kumman, P.; Kumethong, W.; Jewwaiworn, N. Weak convergence theorems of three-step Noor iterative scheme for I-quasi-nonexpansive mappings in Banach spaces, Applied Mathematical Sciences, Volume 2 (2008), pp. 2915-2920

[24] S.Temir; Gul, O. Convergence theorem for I-asymptotically quasi-nonexpansive mapping in Hilbert space, Journal of Mathematical Analysis and Applications, Volume 329 (2007), pp. 759-765

[25] Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bulletin of American Mathematical Society, Volume 73 (1967), pp. 591-597

[26] Dozo, E. Lami Multivalued nonexpansive mappings and Opial's condition, Proceedings of the American Mathematical Society, Volume 38 (1973), pp. 286-292

[27] Mukhamedov, F.; Saburov, M. Weak and and Strong Convergence of an Implicit Iteration Process for an Asymptotically Quasi-I-Nonexpansive Mapping in Banach Space, Fixed Point Theory and Applications (2009), pp. 1-13

[28] Mukhamedov, F.; Saburov, M. Strong Convergence of an Explicit Iteration Process for a Totally Asymptotically I-Nonexpansive Mapping in Banach Spaces, Applied Mathematics Letters, Volume 124 (2010), pp. 1473-1478

Cité par Sources :