On convergence theorems for total asymptotically nonexpansive nonself-mappings in Banach spaces
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 5, p. 389-402.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we define and study new strong convergence theorems of the modified Mann and the modified Ishikawa iterative scheme with errors for nonself-mappings which are total asymptotically nonexpansive in a uniformly convex Banach space.
DOI : 10.22436/jnsa.005.05.08
Classification : 47H09, 47H10, 46B20
Keywords: Asymptotically nonexpansive nonself-mappings, total asymptotically nonexpansive nonself-mappings, common fixed point, uniformly convex Banach space.

Yolacan, Esra 1 ; Kiziltunc, Hukmi 1

1 Department of Mathematics, Faculty of Science, Ataturk University, Erzurum, Turkey
@article{JNSA_2012_5_5_a7,
     author = {Yolacan, Esra and Kiziltunc, Hukmi},
     title = {On convergence theorems for total asymptotically nonexpansive nonself-mappings in {Banach} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {389-402},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {2012},
     doi = {10.22436/jnsa.005.05.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.08/}
}
TY  - JOUR
AU  - Yolacan, Esra
AU  - Kiziltunc, Hukmi
TI  - On convergence theorems for total asymptotically nonexpansive nonself-mappings in Banach spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 389
EP  - 402
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.08/
DO  - 10.22436/jnsa.005.05.08
LA  - en
ID  - JNSA_2012_5_5_a7
ER  - 
%0 Journal Article
%A Yolacan, Esra
%A Kiziltunc, Hukmi
%T On convergence theorems for total asymptotically nonexpansive nonself-mappings in Banach spaces
%J Journal of nonlinear sciences and its applications
%D 2012
%P 389-402
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.08/
%R 10.22436/jnsa.005.05.08
%G en
%F JNSA_2012_5_5_a7
Yolacan, Esra; Kiziltunc, Hukmi. On convergence theorems for total asymptotically nonexpansive nonself-mappings in Banach spaces. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 5, p. 389-402. doi : 10.22436/jnsa.005.05.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.08/

[1] Albert, Ya. I.; Chidume, C. E.; Zegeye, H. Approximating fixed points of total asymptotically nonexpansive mappings, Fixed Point Theory Appl., article ID 10673. , 2006

[2] Berinde, V. Iterative approximation of fixed points. Second edition, Lecture Notes in Mathematics, 1912, Springer, Berlin, 2007

[3] Bruck, R. E.; Kuczumow, T.; Reich, S. Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, in: Colloq. Math., Volume 2 (1993), pp. 169-179

[4] Chidume, C. E. Geometric Properties of Banach Spaces and Nonlinear Iterations, Springer, Berlin, 2009

[5] Chidume, C. E.; Ofoedu, E. U.; Zegeye, H. Strong and weak convergence theorems for fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl., Volume 280 (2003), pp. 364-374

[6] Chidume, C. E.; E. U. Ofoedu Approximation of common fixed points for finite families of total asymptotically nonexpansive mappings, J. Math. Anal. Appl., Volume 333 (2007), pp. 128-141

[7] Cho, Y. J.; Zhou, H. Y.; Guo, G. Weak and strong convergence theorems for three-step _ Iterations with errors for asymptotically nonexpansive mappings, Comput. Math. Appl., Volume 47 (2004), pp. 707-717

[8] Goebel, K.; Kirk, W. A. A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., Volume 35 (1972), pp. 171-174

[9] Hu, G.; Yang, L. Strong convergence of the modified three step iterative process in Banach spaces, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., Volume 15 (2008), pp. 555-571

[10] Khan, S. H.; Takahashi, W. Approximanting common fixed points of two asymptotically nonexpansive mappings, Sci. Math. Jpn., Volume 53 (1) (2001), pp. 143-148

[11] Khan, S. H.; Hussain, N. Convergence theorems for nonself asymptotically nonexpansive mappings, Comput. Math. Appl., Volume 55 (2008), pp. 2544-2553

[12] Kim, G. E.; Kim, T. H. Mann and Ishikawa iterations with errors for non-Lipschitzian mappings in Banach spaces, Comput. Math. Appl., Volume 42 (2001), pp. 1565-1570

[13] Kirk, W. A. Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math., Volume 17 (1974), pp. 339-346

[14] Maiti, N.; Ghosh, M. K. Approximating fixed points by Ishikawa iterates, Bull. Aust. Math. Soc., Volume 40 (1989), pp. 113-117

[15] Nilsrakoo, W.; Saejung, S. A new strong convergence Theorem for non-Lipschitzian Mappings in a uniformly convex Banach Space, Rostock, Math. Kolloq., Volume 64 (2009), pp. 75-86

[16] Osilike, M. O.; Aniagbosar, S. C. Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Comput. Modelling, Volume 32 (2000), pp. 1181-1191

[17] Qin, X.; Su, Y.; Shang, M. Approximating common fixed points of non-self asymptotically nonexpansive mappings in Banach Spaces, J. Appl. Math. Comput., Volume 26 (2008), pp. 233-246

[18] Schu, J. Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl., Volume 158 (1991), pp. 407-413

[19] Schu, J. Weak and strong convergence of a fixed points of asymptotically nonexpansive mappings , Bull. Aust. Math. Soc., Volume 43 (1991), pp. 153-159

[20] Senter, H. F.; Dotson, W. G. Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., Volume 44 (1974), pp. 375-380

[21] Tan, K. K.; H. K. Xu Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., Volume 178 (1993), pp. 301-308

[22] Xu, Y. Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl., Volume 224 (1998), pp. 91-101

Cité par Sources :