Uniformly normal structure and uniformly generalized Lipschitzian semigroups
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 5, p. 379-388.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this work, we introduce some condition on one-parameter semigroup of self-mappings it is called $k$-uniformly generalized Lipschitzian. The condition is weaker than Lipschitzian type conditions. Also, we show that a $k$-generalized Lipschitzian semigroup of nonlinear self-mappings of a nonempty closed convex subset $C$ of real Banach space $X$ admits a common fixed point if the semigroup has a bounded orbit and if $k > 0$. Our results extending the results due to L.C. Ceng, H. K. Xu and J.C. Yao [5]
DOI : 10.22436/jnsa.005.05.07
Keywords: Uniformly normal structure, Uniformly generalized semigroup, Fixed point, Characteristic of convexity, Modulus of convexity.

Soliman, Ahmed H. 1 ; Barakat, Mohamed A. 1

1 Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
@article{JNSA_2012_5_5_a6,
     author = {Soliman, Ahmed H. and Barakat, Mohamed A.},
     title = {Uniformly normal structure and uniformly generalized {Lipschitzian} semigroups},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {379-388},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {2012},
     doi = {10.22436/jnsa.005.05.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.07/}
}
TY  - JOUR
AU  - Soliman, Ahmed H.
AU  - Barakat, Mohamed A.
TI  - Uniformly normal structure and uniformly generalized Lipschitzian semigroups
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 379
EP  - 388
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.07/
DO  - 10.22436/jnsa.005.05.07
LA  - en
ID  - JNSA_2012_5_5_a6
ER  - 
%0 Journal Article
%A Soliman, Ahmed H.
%A Barakat, Mohamed A.
%T Uniformly normal structure and uniformly generalized Lipschitzian semigroups
%J Journal of nonlinear sciences and its applications
%D 2012
%P 379-388
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.07/
%R 10.22436/jnsa.005.05.07
%G en
%F JNSA_2012_5_5_a6
Soliman, Ahmed H.; Barakat, Mohamed A. Uniformly normal structure and uniformly generalized Lipschitzian semigroups. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 5, p. 379-388. doi : 10.22436/jnsa.005.05.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.07/

[1] Aksoy, A. G.; M. A. Khamsi Nonstandard methods in fixed point theory, Springer, New York, 1990

[2] Bruck, R. E. On the almost-convergence of iterates of a nonexpansive mappings in Hilbert space and the structure of the weak-limit set, Israel J. Math., Volume 29 (1978), pp. 1-16

[3] Bynum, W. L. Normal structure coefficients for Banach spaces, Pacific J. Math., Volume 86 (1980), pp. 427-436

[4] Casini, E.; Maluta, E. Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure, Nonlinear Anal., Volume 9 (1985), pp. 103-108

[5] Ceng, L. C.; Xu, H. K.; Yao, J. C. Uniformly normal structure and uniformly Lipschitzian semigroups, Nonlinear Anal., doi:10.1016/j.na. 2010.07. 044., 2010

[6] Edelstein, M. The construction of an asymptotic center with a fixed point property, Bull. Amer. Math. Soc., Volume 78 (1972), pp. 206-208

[7] Goebel, K. Convexity of balls and fixed point theorems for mappings with nonexpansive square, Compos. Math., Volume 22 (1970), pp. 269-274

[8] Goebel, K.; Kirk, W. A. A fixed point theorem for transformations whose iterates have uniform Lipschitz constant, Studia Math. , Volume 47 (1973), pp. 135-140

[9] Goebel, K.; Reich, S. Uniform convexity, hyperbolic geometry and nonexpansive mappings, in: pure and Applied Math., A series of Monoghraph and Textbooks, 83, Marcel Dekker, New York, 1984

[10] Ishihara, H.; W. Takahashi Fixed point theorems for unformly Lipschitzian semigroups in Hilbert spaces, J. Math. Anal. Appl. , Volume 127 (1987), pp. 206-210

[11] Kato, M.; Maligranda, L.; Y. Takahashi On James and Jordan-von Neumann constants and normal structure coefficient in Banach spaces, Studia Math. , Volume 144 (2001), pp. 275-293

[12] Lifschits, E. A. Fixed point theorems for operators in strongly convex spaces, Voronez Gos. Univ. Trudy Math. Fak. , Volume 16 (1975), pp. 23-28

[13] Lim, T. C. On the normal structure coefficient and the bounded sequence coefficient, Proc. Amer. Math. Soc., Volume 88 (1983), pp. 262-264

[14] Maluta, E. Uniform normal structure and related coefficients, Paciffic J. Math. , Volume 111 (1984), pp. 357-369

[15] Prus, S.; Szczepanik, M. New coefficients related to uniform normal structure, Nonlinear and Convex Anal., Volume 2 (2001), pp. 203-215

[16] Tan, K. K.; Xu, H. K. Fixed point theorems for Lipschitzian semigroups in Banach spaces, Nonlinear Anal. , Volume 20 (1993), pp. 395-404

[17] Wu, X.; Yao, J. C.; Zeng, L. C. Uniformly normal structure and strong convergences theorems for asymptoticlly pseudocontractive mapping, J. Nonlinear convex Anal., Volume 6 (3) (2005), pp. 453-463

[18] Xu, H. K. Fixed point theorems for uniformly Lipschitzian semigroups in uniformly convex spaces, J. Math. Anal. Appl. , Volume 152 (1990), pp. 391-398

[19] Yao, J. C.; L. C. Zeng A fixed point theorem for asymptotically regular semigroups in metric spaces with uniform normal structure, J. Nonlinear convex Anal. , Volume 8 (1) (2007), pp. 153-163

[20] Zeng, L. C. Fixed point theorems for nonlinear semigroups of Lipschitzian mappings in uniformly convex spaces, Chinese Quart. J. Math. , Volume 9 (4) (1994), pp. 64-73

[21] Zeng, L. C. On the existence of fixed points and nonlinear ergodic retractions for Lipschitzian semigroups without convexity, Nonlinear Anal. , Volume 24 (1995), pp. 1347-1359

[22] Zeng, L. C. Fixed point theorems for asymptotically regular Lipschitzian semigroups in Banach spaces, Chinese Ann. Math., Volume 16A (6) (1995), pp. 744-751

[23] Zeng, L. C.; Yang, Y. L. On the existence of fixed points for Lipschitzian semigroups in Banach spaces, Chinese Ann. Math. , Volume 22B (3) (2001), pp. 397-404

[24] Zeng, L. C. Fixed point theorems for asymptotically regular semigroups in Banach spaces, Chinese Ann. Math., Volume 23A (6) (2002), pp. 699-706

[25] Zeng, L. C. Weak uniform normal structure and fixed points of asymptotically regular semigroups, Acta. Math. Sin. (English Series) , Volume 20 (6) (2004), pp. 977-982

[26] Zeng, L. C. Uniform normal structure and solutions of Reich's open question, Appl. Math. Mech., Volume 26 (9) (2005), pp. 1204-1211

Cité par Sources :