On fuzzy order relations
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 5, p. 357-378.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this review article we present results regarding the fuzzy order relations.The concept of fuzzy order was introduced by generalizing the notion of reflexivity, antisymmetric and transitivity.
DOI : 10.22436/jnsa.005.05.06
Classification : 47H10
Keywords: Ordered set, fuzzy ordered set, Zorn's lemma, fixed point, selection, extension, variational principle, multivalued mapping, fuzzy metric spaces, fuzzy Riesz spaces, fuzzy positive linear operator, Hahn-Banach theorem.

Beg, Ismat 1

1 Lahore University of Management Sciences & University of Central Punjab, Lahore, Pakistan
@article{JNSA_2012_5_5_a5,
     author = {Beg, Ismat},
     title = {On fuzzy order relations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {357-378},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {2012},
     doi = {10.22436/jnsa.005.05.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.06/}
}
TY  - JOUR
AU  - Beg, Ismat
TI  - On fuzzy order relations
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 357
EP  - 378
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.06/
DO  - 10.22436/jnsa.005.05.06
LA  - en
ID  - JNSA_2012_5_5_a5
ER  - 
%0 Journal Article
%A Beg, Ismat
%T On fuzzy order relations
%J Journal of nonlinear sciences and its applications
%D 2012
%P 357-378
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.06/
%R 10.22436/jnsa.005.05.06
%G en
%F JNSA_2012_5_5_a5
Beg, Ismat. On fuzzy order relations. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 5, p. 357-378. doi : 10.22436/jnsa.005.05.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.06/

[1] Abian, S.; Brown, A. B. A theorem on partially ordered sets, with applications to fixed point theorems, Canad. J. Math., Volume 13 (1961), pp. 78-82

[2] Aliprantis, C. D.; Border, K. C. Infinite Dimensional Analysis, Springer Verlag, Heidelberg , 1994

[3] Alipantis, C. D.; Brown, D. J.; Burkinshaw, O. Edgeworth equilibria, Econometrica, Volume 55 (1987), pp. 1109-1137

[4] Beg, I. \(\sigma\)-Complete fuzzy Riesz spaces, Resultate der Mathematik, Volume 31 (1997), pp. 292-299

[5] Beg, I. Fixed points of fuzzy multivalued mappings with values in fuzzy ordered sets, J. Fuzzy Math., Volume 6 (1998), pp. 127-131

[6] Beg, I. Extension of fuzzy positive linear operators, J. Fuzzy Math., Volume 6(4) (1998), pp. 849-855

[7] Beg, I. On fuzzy Zorn's lemma, Fuzzy Sets and Systems, Volume 101(1) (1999), pp. 181-183

[8] Beg, I. Fixed points of fuzzy monotone maps , Archivum Math., Volume 35 (1999), pp. 141-144

[9] Beg, I. Fixed points of expansive mappings on fuzzy preordered sets, J. Fuzzy Math., Volume 7 (1999), pp. 397-400

[10] I. Beg A general theorem on selectors of fuzzy multifunctions , J. Fuzzy Math., Volume 9(1) (2001), pp. 97-101

[11] Beg, I. Extension of fuzzy Zorn's lemma to nontransitive fuzzy relations, J. Fuzzy Math., Volume 10(3) (2002), pp. 681-685

[12] Beg, I. Fuzzy ordering and completeness of fuzzy metric spaces, J. Fuzzy Math., Volume 10(4) (2002), pp. 789-795

[13] I. Beg Some applications of fuzzy ordered relations, CUBO, Volume 6(1) (2004), pp. 103-114

[14] Beg, I. Fuzzy multivalued functions, Bull. Allahabad Math. Soc., Volume 21 (2006), pp. 41-104

[15] Beg, I.; Ashraf, S. Fuzzy equivalence relations, Kuwait J. Sci.and Eng., Volume (35)(1A) (2008), pp. 33-51

[16] Beg, I.; S. Ashraf Fuzzy similarity and measure of similarity with Lukasiewicz implicator, New Math. and Natural Computation, Volume 4(2) (2008), pp. 191-206

[17] Beg, I.; Ashraf, S. Fuzzy dissimilarity and distance functions, Fuzzy Information and Engineering, Volume 2 (2009), pp. 205-217

[18] Beg, I.; S. Ashraf Fuzzy inclusion and fuzzy similarity with Godel implication operator, New Math. and Natural Computation, Volume 5(3) (2009), pp. 617-633

[19] Beg, I.; Ashraf, S. Similarity measures for fuzzy sets, Applied and Computational Math., Volume 8(2) (2009), pp. 192-202

[20] Beg, I.; Ashraf, S. Fuzzy Relations , Lambert Academic Publisher(ISBN 978-3-8383-2069-4) , Germany , 2009

[21] Beg, I.; S. Ashraf Fuzzy transitive relations, Fuzzy Systems and Math., Volume 24(4) (2010), pp. 162-169

[22] Beg, I.; Ashraf, S. Fuzzy set of inclusion under Kleene's implicator, Applied and Computational Math., Volume 10(1) (2011), pp. 65-77

[23] Beg, I.; Ashraf, S. Fuzzy relational calculus, Bulletin of the Malaysian Mathematical Sciences Society , to appear, 2013

[24] Beg, I.; Butt, N. (Im)possibility theorems in fuzzy framework, Critical Review; a publication of Society for Mathematics of Uncertainity (2010), pp. 1-11

[25] Beg, I.; Islam, M. Fuzzy Riesz spaces, J. Fuzzy Math., Volume 2(1) (1994), pp. 211-229

[26] Beg, I.; Islam, M. Fuzzy ordered linear spaces, J. Fuzzy Math., Volume 3(3) (1995), pp. 659-670

[27] Beg, I.; Islam, M. Fuzzy Archimedean spaces, J. Fuzzy Math., Volume 5(2) (1997), pp. 413-423

[28] Bergstrom, T. X. Maximal elements of acyclic relations on compact sets, J. Economic Theory, Volume 10 (1975), pp. 403-404

[29] Billot, A. Economic Theory of Fuzzy Equilibria, Springer - Verlag, Berlin , 1992

[30] Birkho, G. Lattice Theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., Vol 25, AMS Providence, R.I., 1967

[31] Bose, B. K.; Sahani, D. Fuzzy mappings and fixed point theorems, Fuzzy Sets and Systems, Volume 21 (1987), pp. 53-58

[32] Brown, G. J. A note on fuzzy sets, Inform. and Control, Volume 18 (1971), pp. 32-39

[33] Caristi, J. Fixed point theorems for mapping satisfying inwardness conditions, Trans. Amer. Math. Soc., Volume 215 (1976), pp. 241-251

[34] Caristi, J.; Kirk, W. A. Geometric fixed point theory and inwardness conditions, Proceedings of the Conf. on Geometry of Metric and Linear Spaces, Lecture Notes in Mathematics 490, Springer Verlag, 1975

[35] Chapin, E. W.; Jr. Set valued set theory, Part I , Notre Dame J. Formal Logic, Volume XV(4) (1974), pp. 619-634

[36] Chapin, E. W.; Jr. Set valued set theory, Part II, Notre Dame J. Formal Logic, Volume XVI (2) (1975), pp. 255-267

[37] Corley, H. W. An existence results for maximizations with respect to cones, J. Optimization Theory and Appl., Volume 34 (1980), pp. 277-281

[38] Corley, H. W. Existence and Lagrangian duality for maximization of set-valued functions, J. Optimization Theory and Appl., Volume 54 (1987), pp. 489-501

[39] Cristescu, R. Ordered Vector Spaces and Linear Operators, Editura Academiei, Bucharest , 1976

[40] Davis, A. C. A characterization of complete lattices, Pacific J. Math., Volume 5 (1955), pp. 311-319

[41] Debreu, G. Mathematical Economics: Twenty papers of Gerard Debreu, Cambridge University Press, Cambridge, 1983

[42] K. J. Devin The Joy of Sets: Fundamentals of contemporary set theory, Springer-Verlag, New York, 1993

[43] Dubois, D.; Prade, H. Fundamentals of Fuzzy Sets, Kluwer Academic Publishers, Dordrecht , 2000

[44] Dubois, D.; Prade, H. On possibility theory, formal concept analysis and granulation, Applied and Computational Math., in press., 2011

[45] Ekeland, I. On the variational principle, J. Math. Anal. Appl., Volume 47 (1974), pp. 324-353

[46] I. Ekeland Nonconvex minimization problems, Bull. Amer. Math. Soc. (New Series), Volume 1 (1979), pp. 443-474

[47] Fan, K. A generalization of Tychonoff's fixed point theorem, Math. Ann., Volume 142 (1961), pp. 305-310

[48] Fang, J. X. On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 46 (1992), pp. 107-113

[49] Gal, S. G. Approximate selection for fuzzy-set-valued mappings and applications, J. Fuzzy Math., Volume 3 (1995), pp. 941-947

[50] Goebel, K.; Kirk, W. A. Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., 28, Cambridge University Press, London , 1990

[51] Hadzic, O. Fixed point theorems for multivalued mappings in some classes of fuzzy metric spaces, Fuzzy Sets and Systems, Volume 29 (1989), pp. 115-125

[52] Halmos, P. R. Naive Set Theory, Springer-Verlag, New York, 1974

[53] He, P. J. The variational principle in fuzzy metric spaces and its applications, Fuzzy Sets and Systems, Volume 45 (1992), pp. 389-394

[54] Heilpern, S. Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl., Volume 83 (1981), pp. 566-569

[55] Hohle, U.; Stout, L. N. Foundation of fuzzy sets, Fuzzy Sets and Systems, Volume 40 (1991), pp. 257-296

[56] Howard, P.; Rubin, J. E. Consequences of The Axiom of Choice, American Mathematical Society, Providence, RI-1998.

[57] Jech, T. The Axiom of Choice, North Holland, Amsterdam , 1973

[58] Jech, T. Set Theory, Academic Press, New York, 1978

[59] Jung, J. S.; Cho, C. Y.; Kim, J. K. Minimization theorems for fixed point theorem in fuzzy metric spaces and applications, Fuzzy Sets and Systems, Volume 61 (1994), pp. 199-207

[60] Jung, J. S.; Cho, Y. J.; Kang, S. M.; Chang, S. S. Coincidence theorems for set valued mappings and Ekeland's variational principle in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 79 (1996), pp. 239-250

[61] Kaleva, O. A note on fixed points for fuzzy mappings , Fuzzy Sets and Systems, Volume 15 (1985), pp. 99-100

[62] Kaleva, O.; Seikkala, S. On fuzzy metric spaces, Fuzzy Sets and Systems, Volume 12 (1984), pp. 215-229

[63] Kelley, J. L. General Topology, D.Von Nostrand Co., Inc., New York, 1965

[64] Kerre, E. E. Basic principles of fuzzy set theory for the representation and manipulation of imprecision and uncertainty, In: Introduction to the Basic Principles of Fuzzy Set Theory and some of its Applications, E. E. Kerre, ed., Communication and Cognition, Gent, second revised edition (1993), pp. 1-158

[65] E. E. Kerre The impact of fuzzy set theory on contemporary mathematics, Applied and Computational Math., in press., 2011

[66] Kirk, W. A. Caristi's fixed point theorem and metric convexity, Colloq. Math., Volume XXXVI (1976), pp. 81-86

[67] Knaster, B. Un theoreme sur les fonctions d'ensembles, Ann. Soc. Polon. Math., Volume 6 (1928), pp. 133-134

[68] Kundu, S. Similarity relations, fuzzy linear orders and fuzzy partial orders, Fuzzy Sets and Systems, Volume 109 (2000), pp. 419-428

[69] Lee, B. S.; Cho, S. J. A fixed point theorem for contractive-type fuzzy mappings, Fuzzy Sets and Systems, Volume 61 (1994), pp. 309-312

[70] Li, H. X.; Yen, V. C. Fuzzy Sets and Fuzzy Decision-Making, CRC Press. Inc., London , 1995

[71] Lukasiewicz, J. A numerical interpretation of the theory of propositions, Ruch Filozoczny, Volume 23 (1922), pp. 92-94

[72] Merigo, J. M.; Gil-Lafuente, A. M. An overview of fuzzy research in the ISI web of knowledge, Proc. World Congress on Engineering Vol. I (ISBN: 978-988-17012-5-1). 1, London, 2009

[73] Moore, J. C. Zermelo's axiom of choice: Its origins, development, and influence, Springer-Verlag, New York, 1982

[74] Negoita, C. V.; Ralescu, D. A. Applications of fuzzy sets to system analysis, Fuzzy Sets and Systems, Volume 1 (1978), pp. 155-167

[75] Novak, V. Fuzzy Sets and Their Applications, Adam Hilger, Bristol, England , 1989

[76] Orlovsky, S. A. Decision making with a fuzzy preference relation, Fuzzy Sets and Systems, Volume 1 (1978), pp. 155-167

[77] Park, J. Y.; Jeong, J. U. Common fixed points of fuzzy mappings, Fuzzy Sets and Systems, Volume 59 (1993), pp. 231-235

[78] N. Prati On the comparison between fuzzy set axiomatizations, Fuzzy Sets and Systems, Volume 46 (1992), pp. 167-175

[79] N. Prati On the notion of fuzzy set, Stochastica , Volume XIII-1 (1992), pp. 101-114

[80] Rhie, G. S.; Hwang, I. A. On the fuzzy Hahn-Banach theorem- an analytic form, Fuzzy Sets and Systems , Volume 108 (1999), pp. 117-121

[81] Richter, M. K. Revealed preference theory, Econometrica , Volume 34 (1966), pp. 635-645

[82] Rubin, H.; Rubin, J. E. Equivalence of the Axiom of Choice, North Holland, Amsterdam , 1963

[83] B. Russell Vagueness , Australian J. Phil., Volume 1(1) (1923), pp. 84-92

[84] Smithson, R. E. Fixed points of order preserving multifunctions, Proc. Amer. Math. Soc., Volume 28(1) (1971), pp. 304-310

[85] Szpilrajn, E. Sur l'extension de l'ordre partiel , Fundamenta Mathematicae, Volume 16 (1930), pp. 386-389

[86] A. Tarski A lattice theoretic fixed point theorem and its applications , Pacific J. Math., Volume 5 (1955), pp. 285-309

[87] Venugopalan, P. Fuzzy ordered sets, Fuzzy Sets and Systems, Volume 46 (1992), pp. 221-226

[88] Vijayaraju, P.; Marudai, M. Fixed point for pair of maps in fuzzy metric spaces, J. Fuzzy Math., Volume 8(1) (2000), pp. 117-122

[89] Zaanen, A. C. Introduction to Operator Theory in Riesz Spaces, Springer-Verlag, Berlin , 1997

[90] Zadeh, L. A. Fuzzy Sets, Inform. and Control, Volume 8 (1965), pp. 338-353

Cité par Sources :