Jensen type inequalities for twice dierentiable functions
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 5, p. 350-356.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we give some Jensen-type inequalities for $\varphi: I\rightarrow\mathbb{R}, I=[\alpha,\beta ]\subset\mathbb{R}$ where $\varphi$ is a continuous function on $I$; twice differentiable on $I^°=(\alpha,\beta )$ and there exists $m = \inf _{x\in I^°} \varphi ''(x)$ or $M = \sup_{x\in I^°}\varphi '' (x)$. Furthermore, if $\varphi ''$ is bounded on $I^°$ ; then we give an estimate, from below and from above of Jensen inequalities.
DOI : 10.22436/jnsa.005.05.05
Classification : 26D15
Keywords: Jensen inequality, Convex functions, Twice differentiable functions

El Frissi, Abdallah  1 ; Belaïdi, Benharrat 1 ; Lareuch, Zinelaâbidine 1

1 Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), B. P. 227 Mostaganem, Algeria
@article{JNSA_2012_5_5_a4,
     author = {El Frissi, Abdallah  and Bela{\"\i}di, Benharrat and Lareuch, Zinela\^abidine},
     title = {Jensen type inequalities for twice dierentiable functions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {350-356},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {2012},
     doi = {10.22436/jnsa.005.05.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.05/}
}
TY  - JOUR
AU  - El Frissi, Abdallah 
AU  - Belaïdi, Benharrat
AU  - Lareuch, Zinelaâbidine
TI  - Jensen type inequalities for twice dierentiable functions
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 350
EP  - 356
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.05/
DO  - 10.22436/jnsa.005.05.05
LA  - en
ID  - JNSA_2012_5_5_a4
ER  - 
%0 Journal Article
%A El Frissi, Abdallah 
%A Belaïdi, Benharrat
%A Lareuch, Zinelaâbidine
%T Jensen type inequalities for twice dierentiable functions
%J Journal of nonlinear sciences and its applications
%D 2012
%P 350-356
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.05/
%R 10.22436/jnsa.005.05.05
%G en
%F JNSA_2012_5_5_a4
El Frissi, Abdallah ; Belaïdi, Benharrat; Lareuch, Zinelaâbidine. Jensen type inequalities for twice dierentiable functions. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 5, p. 350-356. doi : 10.22436/jnsa.005.05.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.05/

[1] Budimir, I.; Dragomir, S. S.; Pečarić, J. Further reverse results for Jensen’s discrete inequality and applications in information theory, J. Inequal. Pure Appl. Math., Volume 2 (2001), pp. 1-14

[2] Malamud, S. M. Some complements to the Jensen and Chebyshev inequalities and a problem of W. Walter, Proc. Amer. Math. Soc., Volume 129 (2001), pp. 2671-2678

[3] Mitrinović, D. S.; Pečarić, J. E.; Fink, A. M. Classical and new inequalities in analysis. Mathematics and its Applications (East European Series), Kluwer Academic Publishers Group, Dordrecht, 1993

[4] Saluja, G. S. Convergence of fixed point of asymptoticaly quasi-nonexpansive type mappings in convex metric spaces, J. Nonlinear Sci. Appl., Volume 1 (2008), pp. 132-144

Cité par Sources :