Voir la notice de l'article provenant de la source International Scientific Research Publications
Moghaddasi, G. 1
@article{JNSA_2012_5_5_a3, author = {Moghaddasi, G.}, title = {Sequentially injective and complete acts over a semigroup}, journal = {Journal of nonlinear sciences and its applications}, pages = {345-349}, publisher = {mathdoc}, volume = {5}, number = {5}, year = {2012}, doi = {10.22436/jnsa.005.05.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.04/} }
TY - JOUR AU - Moghaddasi, G. TI - Sequentially injective and complete acts over a semigroup JO - Journal of nonlinear sciences and its applications PY - 2012 SP - 345 EP - 349 VL - 5 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.04/ DO - 10.22436/jnsa.005.05.04 LA - en ID - JNSA_2012_5_5_a3 ER -
%0 Journal Article %A Moghaddasi, G. %T Sequentially injective and complete acts over a semigroup %J Journal of nonlinear sciences and its applications %D 2012 %P 345-349 %V 5 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.04/ %R 10.22436/jnsa.005.05.04 %G en %F JNSA_2012_5_5_a3
Moghaddasi, G. Sequentially injective and complete acts over a semigroup. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 5, p. 345-349. doi : 10.22436/jnsa.005.05.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.04/
[1] Injectivity and essential extensions in equational classes of algebras, Queen’s Papers in Pure and Applied Mathematics, Volume 25 (1970), pp. 131-147
[2] The injective envelope of S-Sets, Canad. Math. Bull., Volume 10 (1967), pp. 261-273
[3] Algebra in a topos of sheaves: injectivity in quasi-equational classes, Pure and Appl. Alg., Volume 26 ( 1982), pp. 269-280
[4] On ideal closure operators of M-sets, Southeast Asian Bulletin of mathematics (to appear)
[5] Injective hulls of acts over left zero semigroups, Semigroup Forum, Volume 75 (2007), pp. 212-220
[6] Baer criterion and injectivity of projection algebras, Semigroup Forum (to appear)
[7] On m-separated projection spaces, Applied Categorical Structures, Volume 2 (1994), pp. 91-99
[8] acts and categories, Walter de Gruyter, Berlin, New York, 2000
Cité par Sources :