$H(.,.)-\eta$-cocoercive operators and variational-like inclusions in Banach spaces
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 5, p. 334-344.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we define $H(.,.)-\eta$-cocoercive operators in q-uniformly smooth Banach spaces and its resolvent operator. We prove the Lipschitz continuity of the resolvent operator associated with $H(.,.)-\eta$-cocoercive operator and estimate its Lipschitz constant. By using the techniques of resolvent operator, an iterative algorithm for solving a variational-like inclusion problem is constructed. The existence of solution for the variational-like inclusions and the convergence of iterative sequences generated by the algorithm is proved. Some examples are given.
DOI : 10.22436/jnsa.005.05.03
Classification : 47H19, 49J40
Keywords: \(H(., .)-\eta\)-cocoercive, Algorithm, Inclusion, Banach spaces, Lipschitz continuity.

Ahmad, Rais 1 ; Dilshad, Mohammad 1

1 Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India
@article{JNSA_2012_5_5_a2,
     author = {Ahmad, Rais and Dilshad, Mohammad},
     title = {\(H(.,.)-\eta\)-cocoercive operators and variational-like inclusions in {Banach} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {334-344},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {2012},
     doi = {10.22436/jnsa.005.05.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.03/}
}
TY  - JOUR
AU  - Ahmad, Rais
AU  - Dilshad, Mohammad
TI  - \(H(.,.)-\eta\)-cocoercive operators and variational-like inclusions in Banach spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 334
EP  - 344
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.03/
DO  - 10.22436/jnsa.005.05.03
LA  - en
ID  - JNSA_2012_5_5_a2
ER  - 
%0 Journal Article
%A Ahmad, Rais
%A Dilshad, Mohammad
%T \(H(.,.)-\eta\)-cocoercive operators and variational-like inclusions in Banach spaces
%J Journal of nonlinear sciences and its applications
%D 2012
%P 334-344
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.03/
%R 10.22436/jnsa.005.05.03
%G en
%F JNSA_2012_5_5_a2
Ahmad, Rais; Dilshad, Mohammad. \(H(.,.)-\eta\)-cocoercive operators and variational-like inclusions in Banach spaces. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 5, p. 334-344. doi : 10.22436/jnsa.005.05.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.03/

[1] Ahmad, R.; Dilshad, M.; Wong, M. M.; Yao, J. C. H(.,.)-cocoercive operator and an application for solving generalized variational inclusions, Abs. Appl. Anal. Vol. 2011, Article ID 261534, 12 pages, 2011

[2] Ansari, Q. H.; Yao, J. C. Iterative schemes for solving mixed variational-like inequalities, J. Optim. Theory Appl. Vol. No-3, Volume 108 (2001), pp. 527-541

[3] Bi, Z. S.; Han, Z.; Y. P. Fang Sensitivity analysis for nonlinear variational inclusions involving generalized m-accretive mappings, J. Sichuan Univ., Volume 40(2) (2003), pp. 240-243

[4] Fang, Y. P.; Huang, N. J. H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput., Volume 145 (2003), pp. 795-803

[5] Fang, Y. P.; Huang, N. J. H-accretive operator and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett. , Volume 17 (2004), pp. 647-653

[6] Fang, Y. P.; Cho, Y. J.; Kim, J. K. (\(H,\ete\))-accretive operator and approximating solutions for systems of variational inclusions in Banach spaces, Reprint , , 2004

[7] Fang, Y. P.; Huang, N. J.; Thompson, H. B. A new system of variational inclusions with (\(H,\ete\))-monotone operators in Hilbert spaces, Comput. Math. Appl., Volume 49 (2005), pp. 365-374

[8] Hassouni, A.; Moudafi, A. A perturbed algorithm for variational inclusions, J. Math. Anal. Appl. , Volume 185 (1994), pp. 706-712

[9] Lan, H. Y.; Cho, Y. J.; Verma, R. U. Nonlinear relaxed cocoercive variational inclusions involving (\(A,\ete\))-accretive mapping in Banach spaces, Comput. Math. Appl., Volume 51 (2006), pp. 1529-1538

[10] Peng, J. W. Set-valued variational inclusions with T-accretive operator in Banach spaces, Appl. Math. lett. , Volume 16(6) (2006), pp. 273-282

[11] Xu, Z.; Wang, Z. A generalized mixed variational inclusion involving (\(H(.,.),\eta\))-monotone operators in Banach spaces, J. of Math. Research, Volume 2 (2010), pp. 47-56

[12] Xu, H. K. Inequalities in Banach spaces with application, Nonlinear Anal., Volume 16(12) (1991), pp. 1127-1138

[13] Zou, Y. Z.; Huang, N-J. H(.,.)-accretive operator with an application for solving variational inclusions in Banach spaces, Appl. Math. Comput. , Volume 204 (2008), pp. 809-816

Cité par Sources :