Voir la notice de l'article provenant de la source International Scientific Research Publications
Ahmad, Rais 1 ; Dilshad, Mohammad 1
@article{JNSA_2012_5_5_a2, author = {Ahmad, Rais and Dilshad, Mohammad}, title = {\(H(.,.)-\eta\)-cocoercive operators and variational-like inclusions in {Banach} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {334-344}, publisher = {mathdoc}, volume = {5}, number = {5}, year = {2012}, doi = {10.22436/jnsa.005.05.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.03/} }
TY - JOUR AU - Ahmad, Rais AU - Dilshad, Mohammad TI - \(H(.,.)-\eta\)-cocoercive operators and variational-like inclusions in Banach spaces JO - Journal of nonlinear sciences and its applications PY - 2012 SP - 334 EP - 344 VL - 5 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.03/ DO - 10.22436/jnsa.005.05.03 LA - en ID - JNSA_2012_5_5_a2 ER -
%0 Journal Article %A Ahmad, Rais %A Dilshad, Mohammad %T \(H(.,.)-\eta\)-cocoercive operators and variational-like inclusions in Banach spaces %J Journal of nonlinear sciences and its applications %D 2012 %P 334-344 %V 5 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.03/ %R 10.22436/jnsa.005.05.03 %G en %F JNSA_2012_5_5_a2
Ahmad, Rais; Dilshad, Mohammad. \(H(.,.)-\eta\)-cocoercive operators and variational-like inclusions in Banach spaces. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 5, p. 334-344. doi : 10.22436/jnsa.005.05.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.03/
[1] H(.,.)-cocoercive operator and an application for solving generalized variational inclusions, Abs. Appl. Anal. Vol. 2011, Article ID 261534, 12 pages, 2011
[2] Iterative schemes for solving mixed variational-like inequalities, J. Optim. Theory Appl. Vol. No-3, Volume 108 (2001), pp. 527-541
[3] Sensitivity analysis for nonlinear variational inclusions involving generalized m-accretive mappings, J. Sichuan Univ., Volume 40(2) (2003), pp. 240-243
[4] H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput., Volume 145 (2003), pp. 795-803
[5] H-accretive operator and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett. , Volume 17 (2004), pp. 647-653
[6] (\(H,\ete\))-accretive operator and approximating solutions for systems of variational inclusions in Banach spaces, Reprint , , 2004
[7] A new system of variational inclusions with (\(H,\ete\))-monotone operators in Hilbert spaces, Comput. Math. Appl., Volume 49 (2005), pp. 365-374
[8] A perturbed algorithm for variational inclusions, J. Math. Anal. Appl. , Volume 185 (1994), pp. 706-712
[9] Nonlinear relaxed cocoercive variational inclusions involving (\(A,\ete\))-accretive mapping in Banach spaces, Comput. Math. Appl., Volume 51 (2006), pp. 1529-1538
[10] Set-valued variational inclusions with T-accretive operator in Banach spaces, Appl. Math. lett. , Volume 16(6) (2006), pp. 273-282
[11] A generalized mixed variational inclusion involving (\(H(.,.),\eta\))-monotone operators in Banach spaces, J. of Math. Research, Volume 2 (2010), pp. 47-56
[12] Inequalities in Banach spaces with application, Nonlinear Anal., Volume 16(12) (1991), pp. 1127-1138
[13] H(.,.)-accretive operator with an application for solving variational inclusions in Banach spaces, Appl. Math. Comput. , Volume 204 (2008), pp. 809-816
Cité par Sources :