Existence Results for a Second Order Impulsive Neutral Functional Integrodierential Inclusions in Banach Spaces with Innite Delay
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 5, p. 321-333.

Voir la notice de l'article provenant de la source International Scientific Research Publications

A fixed point theorem for condensing maps due to Martelli combined with theories of a strongly continuous cosine family of bounded linear operators is used to investigate the existence of solutions to second order impulsive neutral functional integrodifferential inclusions with infinite delay in Banach spaces.
DOI : 10.22436/jnsa.005.05.02
Classification : 34K30, 34K45, 34A60, 47D06
Keywords: Second order impulsive integrodifferential inclusion, cosine functions of operators, mild solution, Martelli's fixed point theorem.

Kavitha, V. 1 ; Arjunan, M. Mallika 1 ; Ravichandran, C. 1

1 Department of Mathematics, Karunya University, Karunya Nagar, Coimbatore-641 114, Tamil Nadu, India
@article{JNSA_2012_5_5_a1,
     author = {Kavitha, V. and Arjunan, M. Mallika and Ravichandran, C.},
     title = {Existence {Results} for a {Second} {Order} {Impulsive} {Neutral} {Functional} {Integrodierential} {Inclusions} in {Banach} {Spaces} with {Innite} {Delay}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {321-333},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {2012},
     doi = {10.22436/jnsa.005.05.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.02/}
}
TY  - JOUR
AU  - Kavitha, V.
AU  - Arjunan, M. Mallika
AU  - Ravichandran, C.
TI  - Existence Results for a Second Order Impulsive Neutral Functional Integrodierential Inclusions in Banach Spaces with Innite Delay
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 321
EP  - 333
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.02/
DO  - 10.22436/jnsa.005.05.02
LA  - en
ID  - JNSA_2012_5_5_a1
ER  - 
%0 Journal Article
%A Kavitha, V.
%A Arjunan, M. Mallika
%A Ravichandran, C.
%T Existence Results for a Second Order Impulsive Neutral Functional Integrodierential Inclusions in Banach Spaces with Innite Delay
%J Journal of nonlinear sciences and its applications
%D 2012
%P 321-333
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.02/
%R 10.22436/jnsa.005.05.02
%G en
%F JNSA_2012_5_5_a1
Kavitha, V.; Arjunan, M. Mallika; Ravichandran, C. Existence Results for a Second Order Impulsive Neutral Functional Integrodierential Inclusions in Banach Spaces with Innite Delay. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 5, p. 321-333. doi : 10.22436/jnsa.005.05.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.05.02/

[1] Adimy, M.; K. Ezzinbi Strict solutions of nonlinear hyperbolic neutral differential equations, Appl. Math. Lett., Volume 12:1 (1999), pp. 107-112

[2] Anguraj, A.; Arjunan, M. Mallika Existence and uniqueness of mild and classical solutions of impulsive evolution equations, Electronic Journal of Differential Equations, Volume 2005(111) (2005), pp. 1-8

[3] Bainov, D. D.; P. S. Simeonov Impulsive Differential Equations: Periodic Solutions and Applications, Longman Scientific and Technical Group, England, 1993

[4] Balachandran, K.; Park, J. Y.; Park, S. H. Controllability of nonlocal impulsive quasi-linear integrodifferential systems in Banach spaces, Reports on Mathematical Physics, Volume 65(2) (2010), pp. 247-257

[5] Balachandran, K.; N. Annapoorani Existence results for impulsive neutral evolution integrodifferential equations with infinite delay, Nonlinear Analysis: Hybrid Systems, Volume 3 (2009), pp. 674-684

[6] Banas, J.; Goebal, K. Measures of Noncompactness in Banach spaces, Dekker, New York, 1980

[7] Benchohra, M.; Henderson, J.; Ntouyas, S. K. Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, , 2006

[8] Benchohra, M.; Henderson, J.; Ntouyas, S. K. An existence result for first order impulsive functional differential equations in Banach spaces , Comp. Math. Appl., Volume 42 (2001), pp. 1303-1310

[9] Benchohra, M.; Henderson, J.; Ntouyas, S. K. Semilinear impulsive neutral functional differential inclusions in Banach spaces, Appl. Anal., Volume 81:4 (2002), pp. 951-963

[10] Benchohra, M.; A. Ouahab Impulsive neutral functional differential equations with variable times, Nonlinear Analysis, Volume 55:6 (2003), pp. 679-693

[11] Benchohra, M.; Ntouyas, S. K. Existence and controllability results for nonlinear differential inclusions with nonlocal conditions, J. Appl. Anal., Volume 8 (2002), pp. 31-46

[12] Benchohra, M.; Ouahab, A. Impulsive neutral functional differential inclusions with variable times, Electronic Journal of Differential Equations, Volume 2003:67 (2003), pp. 1-12

[13] Benchohra, M.; Gatsori, E. P.; Henderson, J.; Ntouyas, S. K. Nondensely defined evolution impulsive differential inclusions with nonlocal conditions, J. Math. Anal. Appl., Volume 286 (2003), pp. 307-325

[14] Benchohra, M.; Henderson, J.; Ntouyas, S. K. Existence results for impulsive multivalued semilinear neutral functional differential inclusions in Banach Spaces, J. Math. Anal. Appl., Volume 263 (2001), pp. 763-780

[15] Chang, Y. K.; Anguraj, A.; Arjunan, M. Mallika Existence results for impulsive neutral functional differential equations with infinite delay, Nonlinear Analysis: Hybrid Systems, Volume 2(1) (2008), pp. 209-218

[16] Chang, Y. -K.; Li, W.-T. Existence results for second order impulsive functional differential inclusions, J. Math. Anal. Appl., Volume 301:2 (2005), pp. 477-490

[17] Chang, Y. -K.; Li. Mei. Qi Existence results for second order impulsive functional differential inclusions, J. Appl. Math. Stochastic Anal. (2006), pp. 1-12

[18] Chang, Y. -K. Controllability of impulsive functional differential systems with infinite delay in Banach spaces, Chaos, Solitons & Fractals, Volume 33 (2007), pp. 1601-1609

[19] Chang, Y.-K.; Arjunan, M. Mallika; V. Kavitha Existence results for a second order impulsive functional differential equations with state-dependent delay , Differential Equations and Applications, Volume 1:3 (2009), pp. 325-339

[20] Chang, Y. -K.; Anguraj, A.; K. Karthikeyan Existence for impulsive neutral integrodifferential inclusions with nonlocal initial conditions via fractional operators, Nonlinear Anlaysis, Volume 71 (2009), pp. 4377-4386

[21] Deimling, K. Multivalued Differential Equations , Walter de Gruyter, Berlin, New York, 1992

[22] Erbe, L.; Krawcewicz, W. Existence of solution to B.V.P for impulsive second order differential inclusions, Rocky Mountain J. Math. , Volume 22:2 (1992), pp. 519-539

[23] Frigon, M.; D. O' Regan Boundary value problems for second order impulsive differential equations using set-valued maps, Appl. Anal., Volume 58:3-4 (1995), pp. 325-333

[24] Fu, X.; Cao, Y. Existence for neutral impulsive differential inclusions with nonlocal conditions, Nonlinear Analysis: Theory, Methods and Applications, Volume 68:12 (2008), pp. 3707-3718

[25] Hale, J. K.; Kato, J. Phase space for retarded equations with infinite delay , Funckcial. Ekvac., Volume 21 (1978), pp. 11-41

[26] Hale, J. K.; Verduyn, L.; Sjoerd, M. Introduction to functional differential equations, Appl. Math. Sci., 99. Springer Verlag, New York, 1993

[27] Hale, J. K. Partial neutral functional differential equations, (English. English summary) Rev. Roumaine Math. Pures Appl., Volume 39:4 (1994), pp. 339-344

[28] Hernandez, E. A second order impulsive Cauchy problem , Int. J. Math. Math. Sci., Volume 31(8) (2002), pp. 451-461

[29] Hernandez, E.; Henriquez, H. R. Impulsive partial neutral differential equations, Appl. Math. Lett., Volume 19 (2006), pp. 215-222

[30] Hernandez, E.; Henriquez, H. R.; Marco, R. Existence of solutions for a class of impulsive partial neutral functional differential equations, J. Math. Anal. Appl., Volume 331:2 (2007), pp. 1135-1158

[31] Hernandez, E. Existence results for a partial second order functional differential equation with impulses, Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis, Volume 14 (2007), pp. 229-250

[32] Hernandez, E.; Henriquez, H. R.; Mckibben, M. A. Existence results for abstract impulsive second-order neutral functional differential equations, Nonlinear Analysis:Theory, Methods and Applications, Volume 70 (2009), pp. 2736-2751

[33] Hernandez, E.; Rabello, Marco; Henriquez, Hernn R. Existence of solutions for impulsive partial neutral functional differential equations, J. Math. Anal. Appl., Volume 331:2 (2007), pp. 1135-1158

[34] Hernandez, E.; Henriquez, H. R. Existence results for partial neutral functional differential equations with unbounded delay, J. Math. Anal. Appl., Volume 221:2 (1998), pp. 452-475

[35] Hernandez, E.; Henriquez, H. R. Existence of periodic solutions of partial neutral functional differential equations with unbounded delay, J. Math. Anal. Appl., Volume 221:2 (1998), pp. 499-522

[36] Hernandez, E. Existence results for partial neutral integrodifferential equations with unbounded delay, J. Math. Anal. Appl., Volume 292:1 (2004), pp. 194-210

[37] Hino, Y.; Murakami, S.; T. Naito Functional Differential Equations with Infinite Delay, in: Lecture Notes in Mathematics, Vol.1473, Springer-Verlag, Berlin, 1991

[38] Hu, Sh.; N. Papageorgiou Handbook of Multivalued Analysis, Volume 1, Theory, Kluwer, Dordrecht, Boston, London, 1997

[39] Hu, J.; Liu, X. Existence results of second order impulsive neutral functional integrodifferential inclusions with unbounded delay in Banach spaces, Mathematical and Computer Modelling, Volume 49 (2009), pp. 516-526

[40] J.; Kisynski On cosine operator functions and one parameter group of operators , Studia Math., Volume 49 (1972), pp. 93-105

[41] Kolmanovskii, V.; Myshkis, A. Applied Theory of Functional Differential Equations, Kluwer, Dordrecht, 1992

[42] Kolmanovskii, V.; Myshkis, A. Introduction to the Theory and Applications of Functional Differential Equations, Kluwer, Dordrecht, 1999

[43] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S. Theory of Impulsive Differential Equations, World Scientific, NJ, 1989

[44] Lasota, A.; Z. Opial An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys., Volume 13 (1965), pp. 781-786

[45] Liang, J.; Liu, J. H.; Xiao, T.-J. Nonlocal impulsive problems for nonlinear differential equations in Banach spaces, Math. Comput. Model., Volume 49(3-4) (2009), pp. 794-804

[46] Liu, B. Controllability of impulsive neutral functional differential inclusions with infinite delay, Nonlinear Analysis, Volume 60 (2005), pp. 1533-1552

[47] Liu, J. H. Nonlinear impulsive evolution equations, Dyn. Contin. Discrete Impuls. Syst., Volume 6(1) (1999), pp. 77-85

[48] Martelli, M. A Rothe's type theorem for non-compact acyclic-valued map, Boll. Un. Mat. Ital., Volume 11 (1975), pp. 70-76

[49] Ntouyas, S. K. Existence results for impulsive partial neutral functional differential inclusions, Electronic J. Differential Equations, Volume 2005:30 (2005), pp. 1-11

[50] Park, J. Y.; Balachandran, K.; N. Annapoorani Existence results for impulsive neutral functional integrodifferential equations with infinite delay, Nonlinear Analysis, Volume 71 (2009), pp. 3152-3162

[51] Samoilenko, A. M.; Perestyuk, N. A. Impulsive Differential Equations, World Scientific, Singapore, 1995

[52] Travis, C. C.; G. F. Webb Compactness, regularity, and uniform continuity properties of strongly continuous cosine families, Houston J. Math., Volume 3 (4) (1977), pp. 555-567

[53] Travis, C. C.; G. F. Webb Cosine families and abstract nonlinear second order differential equations, Acta Math.Acad. Sci. Hungaricae, Volume 32 (1978), pp. 76-96

[54] Rogovchenko, Y. V. Nonlinear impulsive evolution systems and applications to population models, J. Math. Anal. Appl., Volume 207(2) (1997), pp. 300-315

[55] Wu, J.; Xia, H. Self-sustained oscillations in a ring array of coupled lossless transmission lines, J. Differential Equations, Volume 124:1 (1996), pp. 247-278

[56] Wu, J. Theory and Applications of Partial Functional Differential Equations, Appl. Math. Sci. 119. Springer Verlag, New York (1996)

[57] Yan, B. Boundary value problems on the half-line with impulses and infinite delay, J. Math. Anal. Appl., Volume 259 (2001), pp. 94-114

Cité par Sources :