Application of fixed point theorems to best simultaneous approximation in ordered semi-convex structure
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 4, p. 294-306.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we establish some common fixed point results for uniformly $C_q$-commuting asymptotically S-nonexpansive maps in a Banach space with semi-convex structure. We also extend the main results of Ćirić [Lj. B. Ćirić, Publ. Inst. Math., 49 (1991), 174-178] and [Lj. B. Ćirić, Arch. Math. (BRNO), 29 (1993), 145-152] to semi-convex structure and obtain common fixed point results for Banach operator pair. The existence of invariant best simultaneous approximation in ordered semi-convex structure is also established.
DOI : 10.22436/jnsa.005.04.05
Classification : 47H10, 54H25
Keywords: Common fixed point, uniformly \(C_q\)-commuting, asymptotically S-nonexpansive map, Banach operator pair, best simultaneous approximation

Hussain, N. 1 ; Pathak, H. K. 2 ; Tiwari, S. 3

1 King Abdul Aziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
2 School of Studies in Mathematics, Pt. Ravishankar Shukla University, Raipur, (C. G.), 492010, India
3 Shri Shankaracharya Institute of Professional Management and Technology, Raipur, (C. G.), 492010, India
@article{JNSA_2012_5_4_a4,
     author = {Hussain, N. and Pathak, H. K. and Tiwari, S.},
     title = {Application of fixed point theorems to best simultaneous approximation in ordered semi-convex structure},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {294-306},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2012},
     doi = {10.22436/jnsa.005.04.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.05/}
}
TY  - JOUR
AU  - Hussain, N.
AU  - Pathak, H. K.
AU  - Tiwari, S.
TI  - Application of fixed point theorems to best simultaneous approximation in ordered semi-convex structure
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 294
EP  - 306
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.05/
DO  - 10.22436/jnsa.005.04.05
LA  - en
ID  - JNSA_2012_5_4_a4
ER  - 
%0 Journal Article
%A Hussain, N.
%A Pathak, H. K.
%A Tiwari, S.
%T Application of fixed point theorems to best simultaneous approximation in ordered semi-convex structure
%J Journal of nonlinear sciences and its applications
%D 2012
%P 294-306
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.05/
%R 10.22436/jnsa.005.04.05
%G en
%F JNSA_2012_5_4_a4
Hussain, N.; Pathak, H. K.; Tiwari, S. Application of fixed point theorems to best simultaneous approximation in ordered semi-convex structure. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 4, p. 294-306. doi : 10.22436/jnsa.005.04.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.05/

[1] Akbar, F.; Khan, A. R. Common fixed point and approximation results for noncommuting maps on locally convex spaces, Fixed Point Theory and Appl., Article ID 207503, Volume 2009 (2009), pp. 1-14

[2] M. A. Al-Thagafi Common fixed point and best approximation, J. Approx. Theory , Volume 85 (1996), pp. 318-323

[3] Beg, I.; Sahu, D. R.; Diwan, S. D. Approximation of fixed points of uniformly R-subweakly commuting mappings, J. Math. Anal. Appl., Volume 324 (2006), pp. 1105-1114

[4] Berinde, V. General constructive fixed point theorems for Ćirić-type almost contractions in metric spaces, Carpathian J. Math., Volume 24 (2008), pp. 10-19

[5] Chen, J.; Z. Li Common fixed points for Banach operator pairs in best approximation, J. Math. Anal., Volume 336 (2007), pp. 1466-1475

[6] E. W. Cheney Application of fixed point theorems to approximation theory, Theory of Approximations, Academic Press (1976), pp. 1-8

[7] Ćirić, LJ. B. A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., Volume 45 (1974), pp. 267-273

[8] Ćirić, LJ. B. On a common fixed point theorem of a Gregus type, Publ. Inst. Math., Volume 49 (1991), pp. 174-178

[9] Ćirić, LJ. B. On Diviccaro, Fisher and Sessa open questions, Arch. Math. (BRNO), Volume 29 (1993), pp. 145-152

[10] Ćirić, LJ. B. Contractive-type non-self mappings on metric spaces of hyperbolic type, J. Math. Anal. Appl. , Volume 317 (2006), pp. 28-42

[11] Diviccaro, M. L.; Fisher, B.; S. Sessa A common fixed point theorem of Gregus type, Publ. Math. Debrecean, Volume 34 (1987), pp. 83-89

[12] Edelstein, M.; O'Brien, R. C. Nonexpansive mappings, asymptotic regularity and successive approximations, J. London Math. Soc. , Volume 17 (1978), pp. 547-554

[13] Goeble, K.; Kirk, W. A. A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., Volume 35 (1972), pp. 171-174

[14] S. P. Gudder A general theory of convexity, Rend. Sem. Mat. Milano, Volume 49 (1979), pp. 89-96

[15] Habiniak, L. Fixed point theorems and invarient approximations, J. Approximation Theory, Volume 56 (1989), pp. 241-244

[16] Hussain, N. Common fixed points in best approximation for Banach operator pairs with Ćirić type I-contractions, J. Math. Anal. Appl., Volume 338 (2008), pp. 1351-1363

[17] Hussain, N.; O'Regan, D.; Agarwal, R. P. Common fixed point and invarient approximation results on non- starshaped domain, Georgian Math. J., Volume 12 (2005), pp. 659-669

[18] Hussain, N.; Rhoades, B. E. \( C_q\)-commuting maps and invariant approximations, Fixed point Theory and Appl., Article ID 24543, Volume 2006 (2006), pp. 1-9

[19] Hussain, N.; Rhoades, B. E.; Jungck, G. Common fixed point and invariant approximation results for Gregus type I-contractions, Numer. Funct. Anal. Optimiz., Volume 28 (2007), pp. 1139-1151

[20] Hussain, N.; Abbas, M.; Kim, J. K. Common fixed point and invariant approximation in Menger convex metric spaces, Bull. Korean Math. Soc., Volume 45 (2008), pp. 671-680

[21] Jungck, G. Commuting mapping and fixed points, Amer. Math. Monthly, Volume 83 (1976), pp. 261-263

[22] Jungck, G. On a fixed point theorem of Fisher and Sessa, Internat. J. Math. Math. Sci., Volume 13 (1990), pp. 497-500

[23] Jungck, G.; Hussain, N. Compatible maps and invarient approximations, J. Math. Anal., Volume 325 (2007), pp. 1003-1012

[24] Jungck, G.; Sessa, S. Fixed point theorems in best approximation theory, Math. Japon, Volume 42 (1995), pp. 249-252

[25] Khan, A. R.; Hussain, N.; Thaheem, A. B. Application of fixed point theorems to invariant approximation, Approx. Theory and Appl. , Volume 16 (2000), pp. 48-55

[26] Khan, S. H.; Hussain, N. Convergence theorems for nonself asymptotically nonexpansive mappings, Comput. Math. Appl., Volume 55 (2008), pp. 2544-2553

[27] Klee, V. Convexity of chebyshev sets, Math. Ann., Volume 142 (1961), pp. 292-304

[28] G. Meinardus Invarianz bei Linearea Approximation, Arch. Rational Mech. Anal., Volume 14 (1963), pp. 301-303

[29] Milman, P. D. On best simultaneous approximation in normed linear spaces, J. Approximation Theory, Volume 20 (1977), pp. 223-238

[30] O'Regan, D.; Hussain, N. Generalized I-contractions and pointwise R-subweakly commuting maps, Acta Math. Sinica, Volume 23 (2007), pp. 1505-1508

[31] Pathak, H. K.; Cho, Y. J.; Kang, S. M. An application of fixed point theorems in best approximation theory, Internat. J. Math. Math. Sci., Volume 21 (1998), pp. 467-470

[32] Pathak, H. K.; Hussain, N. Common fixed points for Banach operator pairs with applications, Nonlinear Anal., Volume 69 (2008), pp. 2788-2802

[33] Petrusel, A. Starshaped and fixed points, Seminar on fixed point theory (Cluj-Napoca), Stud. Univ. ''Babes- Bolyai'' (1987), pp. 19-24

[34] Sahab, S. A.; Khan, M. S.; Sessa, S. A result in best approximation theory, J. Approx. Theory, Volume 55 (1988), pp. 349-351

[35] Sahney, B. N.; Singh, S. P. On best simultaneous approximation, Approximation Theory III, Academic Press (1980), pp. 783-789

[36] Singh, S. P. Application of fixed point theorems in approximation theory, Applied Nonlinear Analysis, Academic Press (1979), pp. 389-394

[37] Singh, S. P. Application of a fixed point theorem to approximation theory, J. Approx. Theory, Volume 25 (1979), pp. 88-89

[38] A. Smoluk Invarient approximations , Mathematyka [Polish], Volume 17 (1981), pp. 17-22

[39] Subrahmanyam, P. V. An application of a fixed point theorem to best approximations, J. Approx. Theory, Volume 20 (1977), pp. 165-172

[40] Vijayraju, P. Applications of fixed point theorem to best simultaneous approximations, Indian J. Pure Appl. Math., Volume 24 (1993), pp. 21-26

Cité par Sources :