Voir la notice de l'article provenant de la source International Scientific Research Publications
Hussain, N. 1 ; Pathak, H. K. 2 ; Tiwari, S. 3
@article{JNSA_2012_5_4_a4, author = {Hussain, N. and Pathak, H. K. and Tiwari, S.}, title = {Application of fixed point theorems to best simultaneous approximation in ordered semi-convex structure}, journal = {Journal of nonlinear sciences and its applications}, pages = {294-306}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2012}, doi = {10.22436/jnsa.005.04.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.05/} }
TY - JOUR AU - Hussain, N. AU - Pathak, H. K. AU - Tiwari, S. TI - Application of fixed point theorems to best simultaneous approximation in ordered semi-convex structure JO - Journal of nonlinear sciences and its applications PY - 2012 SP - 294 EP - 306 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.05/ DO - 10.22436/jnsa.005.04.05 LA - en ID - JNSA_2012_5_4_a4 ER -
%0 Journal Article %A Hussain, N. %A Pathak, H. K. %A Tiwari, S. %T Application of fixed point theorems to best simultaneous approximation in ordered semi-convex structure %J Journal of nonlinear sciences and its applications %D 2012 %P 294-306 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.05/ %R 10.22436/jnsa.005.04.05 %G en %F JNSA_2012_5_4_a4
Hussain, N.; Pathak, H. K.; Tiwari, S. Application of fixed point theorems to best simultaneous approximation in ordered semi-convex structure. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 4, p. 294-306. doi : 10.22436/jnsa.005.04.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.05/
[1] Common fixed point and approximation results for noncommuting maps on locally convex spaces, Fixed Point Theory and Appl., Article ID 207503, Volume 2009 (2009), pp. 1-14
[2] Common fixed point and best approximation, J. Approx. Theory , Volume 85 (1996), pp. 318-323
[3] Approximation of fixed points of uniformly R-subweakly commuting mappings, J. Math. Anal. Appl., Volume 324 (2006), pp. 1105-1114
[4] General constructive fixed point theorems for Ćirić-type almost contractions in metric spaces, Carpathian J. Math., Volume 24 (2008), pp. 10-19
[5] Common fixed points for Banach operator pairs in best approximation, J. Math. Anal., Volume 336 (2007), pp. 1466-1475
[6] Application of fixed point theorems to approximation theory, Theory of Approximations, Academic Press (1976), pp. 1-8
[7] A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., Volume 45 (1974), pp. 267-273
[8] On a common fixed point theorem of a Gregus type, Publ. Inst. Math., Volume 49 (1991), pp. 174-178
[9] On Diviccaro, Fisher and Sessa open questions, Arch. Math. (BRNO), Volume 29 (1993), pp. 145-152
[10] Contractive-type non-self mappings on metric spaces of hyperbolic type, J. Math. Anal. Appl. , Volume 317 (2006), pp. 28-42
[11] A common fixed point theorem of Gregus type, Publ. Math. Debrecean, Volume 34 (1987), pp. 83-89
[12] Nonexpansive mappings, asymptotic regularity and successive approximations, J. London Math. Soc. , Volume 17 (1978), pp. 547-554
[13] A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., Volume 35 (1972), pp. 171-174
[14] A general theory of convexity, Rend. Sem. Mat. Milano, Volume 49 (1979), pp. 89-96
[15] Fixed point theorems and invarient approximations, J. Approximation Theory, Volume 56 (1989), pp. 241-244
[16] Common fixed points in best approximation for Banach operator pairs with Ćirić type I-contractions, J. Math. Anal. Appl., Volume 338 (2008), pp. 1351-1363
[17] Common fixed point and invarient approximation results on non- starshaped domain, Georgian Math. J., Volume 12 (2005), pp. 659-669
[18] \( C_q\)-commuting maps and invariant approximations, Fixed point Theory and Appl., Article ID 24543, Volume 2006 (2006), pp. 1-9
[19] Common fixed point and invariant approximation results for Gregus type I-contractions, Numer. Funct. Anal. Optimiz., Volume 28 (2007), pp. 1139-1151
[20] Common fixed point and invariant approximation in Menger convex metric spaces, Bull. Korean Math. Soc., Volume 45 (2008), pp. 671-680
[21] Commuting mapping and fixed points, Amer. Math. Monthly, Volume 83 (1976), pp. 261-263
[22] On a fixed point theorem of Fisher and Sessa, Internat. J. Math. Math. Sci., Volume 13 (1990), pp. 497-500
[23] Compatible maps and invarient approximations, J. Math. Anal., Volume 325 (2007), pp. 1003-1012
[24] Fixed point theorems in best approximation theory, Math. Japon, Volume 42 (1995), pp. 249-252
[25] Application of fixed point theorems to invariant approximation, Approx. Theory and Appl. , Volume 16 (2000), pp. 48-55
[26] Convergence theorems for nonself asymptotically nonexpansive mappings, Comput. Math. Appl., Volume 55 (2008), pp. 2544-2553
[27] Convexity of chebyshev sets, Math. Ann., Volume 142 (1961), pp. 292-304
[28] Invarianz bei Linearea Approximation, Arch. Rational Mech. Anal., Volume 14 (1963), pp. 301-303
[29] On best simultaneous approximation in normed linear spaces, J. Approximation Theory, Volume 20 (1977), pp. 223-238
[30] Generalized I-contractions and pointwise R-subweakly commuting maps, Acta Math. Sinica, Volume 23 (2007), pp. 1505-1508
[31] An application of fixed point theorems in best approximation theory, Internat. J. Math. Math. Sci., Volume 21 (1998), pp. 467-470
[32] Common fixed points for Banach operator pairs with applications, Nonlinear Anal., Volume 69 (2008), pp. 2788-2802
[33] Starshaped and fixed points, Seminar on fixed point theory (Cluj-Napoca), Stud. Univ. ''Babes- Bolyai'' (1987), pp. 19-24
[34] A result in best approximation theory, J. Approx. Theory, Volume 55 (1988), pp. 349-351
[35] On best simultaneous approximation, Approximation Theory III, Academic Press (1980), pp. 783-789
[36] Application of fixed point theorems in approximation theory, Applied Nonlinear Analysis, Academic Press (1979), pp. 389-394
[37] Application of a fixed point theorem to approximation theory, J. Approx. Theory, Volume 25 (1979), pp. 88-89
[38] Invarient approximations , Mathematyka [Polish], Volume 17 (1981), pp. 17-22
[39] An application of a fixed point theorem to best approximations, J. Approx. Theory, Volume 20 (1977), pp. 165-172
[40] Applications of fixed point theorem to best simultaneous approximations, Indian J. Pure Appl. Math., Volume 24 (1993), pp. 21-26
Cité par Sources :