Voir la notice de l'article provenant de la source International Scientific Research Publications
$ \begin{cases} D^\alpha_{ 0^+}u(t) + f(t; u(t)) = 0; t \in (0; 1); 1 \alpha 2,\\ [I^{2-\alpha}_{ 0^+} u(t)]'|_{t=0} = 0\\ u(1) = 0. \end{cases} $ |
Liu, Yuji 1 ; Shi, Haiping 2
@article{JNSA_2012_5_4_a3, author = {Liu, Yuji and Shi, Haiping}, title = {Existence of unbounded positive solutions for {BVPs} of singular fractional differential equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {281-293}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2012}, doi = {10.22436/jnsa.005.04.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.04/} }
TY - JOUR AU - Liu, Yuji AU - Shi, Haiping TI - Existence of unbounded positive solutions for BVPs of singular fractional differential equations JO - Journal of nonlinear sciences and its applications PY - 2012 SP - 281 EP - 293 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.04/ DO - 10.22436/jnsa.005.04.04 LA - en ID - JNSA_2012_5_4_a3 ER -
%0 Journal Article %A Liu, Yuji %A Shi, Haiping %T Existence of unbounded positive solutions for BVPs of singular fractional differential equations %J Journal of nonlinear sciences and its applications %D 2012 %P 281-293 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.04/ %R 10.22436/jnsa.005.04.04 %G en %F JNSA_2012_5_4_a3
Liu, Yuji; Shi, Haiping. Existence of unbounded positive solutions for BVPs of singular fractional differential equations. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 4, p. 281-293. doi : 10.22436/jnsa.005.04.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.04/
[1] An Introduction to the Fractional Calculus and Fractional Differential Equation , Wiley, New York, 1993
[2] Fractional Integral and Derivative, Theory and Applications, Gordon and Breach, 1993
[3] Positive solutions for boundary value problems of nonlinear fractional differential equations, J. Math. Anal. Appl. , Volume 311 (2005), pp. 495-505
[4] Differential equations of fractional order: methods, results and problems-I, Applicable Analysis, Volume 78 (2001), pp. 153-192
[5] Fractional order differential equations on an unbounded domain, Nonlinear Analysis TMA, Volume 72 (2010), pp. 580-586
[6] On positive solutions of a nonlocal fractional boundary value problem , Nonlinear Analysis, Volume 72 (2010), pp. 916-924
[7] Triple positive solutions for boundary value problem of a nonlinear fractional differential equation, Bulletin of the Iranian Mathematical Society, Volume 33 (2007), pp. 1-14
[8] On the solution of the fractional nonlinear Schrodinger equation, Physics Letters A, Volume 372 (2008), pp. 553-558
[9] Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation, Nonlinear Analysis TMA, Volume 71 (2009), pp. 4676-4688
[10] Existence results of positive solutions to boundary value problem for fractional differential equation, Positivity, Volume 13 (2008), pp. 583-599
[11] Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana University Mathematics Journal, Volume 28 (1979), pp. 673-688
Cité par Sources :