Existence of unbounded positive solutions for BVPs of singular fractional differential equations
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 4, p. 281-293.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this article, we establish the existence of multiple unbounded positive solutions to the boundary value problem of the nonlinear singular fractional differential equation
$ \begin{cases} D^\alpha_{ 0^+}u(t) + f(t; u(t)) = 0; t \in (0; 1); 1 \alpha 2,\\ [I^{2-\alpha}_{ 0^+} u(t)]'|_{t=0} = 0\\ u(1) = 0. \end{cases} $
Our analysis relies on the well known fixed point theorems in the cones in Banach spaces. Here $f$ is singular at $t = 0$ and $t = 1$.
DOI : 10.22436/jnsa.005.04.04
Classification : 34B37, 65L05, 92D25
Keywords: Singular fractional differential equation, boundary value problem, unbounded positive solution, Fixed Point Theorem.

Liu, Yuji 1 ; Shi, Haiping 2

1 Department of Mathematics, Guangdong University of Business Studies, Guangzhou 510320, P. R. China
2 Basic Courses Department, Guangdong Construction Vocational Technology Institute, Guangzhou 510450, P. R. China
@article{JNSA_2012_5_4_a3,
     author = {Liu, Yuji and Shi, Haiping},
     title = {Existence of unbounded positive solutions for {BVPs} of singular fractional differential equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {281-293},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2012},
     doi = {10.22436/jnsa.005.04.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.04/}
}
TY  - JOUR
AU  - Liu, Yuji
AU  - Shi, Haiping
TI  - Existence of unbounded positive solutions for BVPs of singular fractional differential equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 281
EP  - 293
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.04/
DO  - 10.22436/jnsa.005.04.04
LA  - en
ID  - JNSA_2012_5_4_a3
ER  - 
%0 Journal Article
%A Liu, Yuji
%A Shi, Haiping
%T Existence of unbounded positive solutions for BVPs of singular fractional differential equations
%J Journal of nonlinear sciences and its applications
%D 2012
%P 281-293
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.04/
%R 10.22436/jnsa.005.04.04
%G en
%F JNSA_2012_5_4_a3
Liu, Yuji; Shi, Haiping. Existence of unbounded positive solutions for BVPs of singular fractional differential equations. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 4, p. 281-293. doi : 10.22436/jnsa.005.04.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.04/

[1] Miller, K. S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equation , Wiley, New York, 1993

[2] Samko, S. G.; Kilbas, A. A.; O. I. Marichev Fractional Integral and Derivative, Theory and Applications, Gordon and Breach, 1993

[3] Bai, Z.; H. Lv Positive solutions for boundary value problems of nonlinear fractional differential equations, J. Math. Anal. Appl. , Volume 311 (2005), pp. 495-505

[4] Kilbas, A. A.; Trujillo, J. J. Differential equations of fractional order: methods, results and problems-I, Applicable Analysis, Volume 78 (2001), pp. 153-192

[5] Arara, A.; Benchohra, M.; Hamidi, N.; Nieto, J. J. Fractional order differential equations on an unbounded domain, Nonlinear Analysis TMA, Volume 72 (2010), pp. 580-586

[6] Bai, Z. On positive solutions of a nonlocal fractional boundary value problem , Nonlinear Analysis, Volume 72 (2010), pp. 916-924

[7] Dehghant, R.; Ghanbari, K. Triple positive solutions for boundary value problem of a nonlinear fractional differential equation, Bulletin of the Iranian Mathematical Society, Volume 33 (2007), pp. 1-14

[8] Rida, S. Z.; El-Sherbiny, H. M.; Arafa, A. A. M. On the solution of the fractional nonlinear Schrodinger equation, Physics Letters A, Volume 372 (2008), pp. 553-558

[9] Xu, X.; Jiang, D.; Yuan, C. Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation, Nonlinear Analysis TMA, Volume 71 (2009), pp. 4676-4688

[10] F. Zhang Existence results of positive solutions to boundary value problem for fractional differential equation, Positivity, Volume 13 (2008), pp. 583-599

[11] Leggett, R. W.; Williams, L. R. Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana University Mathematics Journal, Volume 28 (1979), pp. 673-688

Cité par Sources :