On coupled generalised Banach and Kannan type contractions
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 4, p. 259-270.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we have proved two theorems in which we have established the existence of coupled fixed point results in partially ordered complete metric spaces for generalised coupled Banach and Kannan type mappings. The generalisation has been accomplished by following the line of argument given by Geraghty [Proc. Amer. Math. Soc., 40 (1973), 604-608] . Here the mapping are assumed to satisfy certain contractive type inequalities. We have illustrated our result with two examples. First example is presented to show that our result is a proper generalizations of the corresponding results of Bhaskar et al [Nonlinear Anal. TMA, 65 (7) (2006), 1379-1393].
DOI : 10.22436/jnsa.005.04.02
Classification : 54H25, 54H10
Keywords: Partially ordered set, Contractive-type mapping, Mixed monotone property, Coupled fixed point.

Choudhury, B. S. 1 ; Kundu, Amaresh 2

1 Department of Mathematics, Bengal Engineering and Science University, Shibpur, Howrah-711103, West Bengal, India
2 Department of Mathematics, Siliguri Institute of Technology, Sukna, Darjeeling-734009, West Bengal, India
@article{JNSA_2012_5_4_a1,
     author = {Choudhury, B. S. and Kundu, Amaresh},
     title = {On coupled generalised {Banach} and {Kannan} type contractions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {259-270},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2012},
     doi = {10.22436/jnsa.005.04.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.02/}
}
TY  - JOUR
AU  - Choudhury, B. S.
AU  - Kundu, Amaresh
TI  - On coupled generalised Banach and Kannan type contractions
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 259
EP  - 270
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.02/
DO  - 10.22436/jnsa.005.04.02
LA  - en
ID  - JNSA_2012_5_4_a1
ER  - 
%0 Journal Article
%A Choudhury, B. S.
%A Kundu, Amaresh
%T On coupled generalised Banach and Kannan type contractions
%J Journal of nonlinear sciences and its applications
%D 2012
%P 259-270
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.02/
%R 10.22436/jnsa.005.04.02
%G en
%F JNSA_2012_5_4_a1
Choudhury, B. S.; Kundu, Amaresh. On coupled generalised Banach and Kannan type contractions. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 4, p. 259-270. doi : 10.22436/jnsa.005.04.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.02/

[1] Agarwal, R. P.; El-Gebeily, M. A.; O'Regan, D. Generalized contractions in partially ordered metric spaces , Appl. Anal., Volume 87(1) (2008), pp. 109-116

[2] Amini-Harandi, A.; Emami, H. A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal. TMA, Volume 72(5) (2010), pp. 2238-2242

[3] H. Aydi Some coupled fixed point results on partial metric spaces, Int. J. Math. Math. Sci., Article ID 647091, doi:10.1155/2011/647091. , Volume 2001 (2011), pp. 1-11

[4] Choudhury, B. S.; Maity, P. Coupled fixed point results in generalized metric spaces, Math. Comput. Modelling, Volume 54 (2011), pp. 73-79

[5] Choudhury, B. S.; Das, K. Fixed points of generalized Kannan type mappings in generalized Menger spaces , Commun. Korean Math. Soc., Volume 24 (2009), pp. 529-537

[6] Choudhury, B. S.; Metiya, N.; A. Kundu Coupled coincidence point theorems in ordered metric Spaces, Ann. Univ. Ferrara, Volume 57 (2011), pp. 1-16

[7] Choudhury, B. S.; A. Kundu A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal. TMA, Volume 73 (2010), pp. 2524-2531

[8] Choudhury, B. S.; Das, K.; Bhandari, S. K. A fixed point theorem for Kannan type mappings in 2-menger space using a control function, Bull. Math. Anal. Appl., Volume 3 (2011), pp. 141-148

[9] Choudhury, B. S.; Kundu, A. A Kannan-like contraction in partially ordered spaces, Demonstratio Mathematica (to appear)

[10] Caballero, J.; Harjani, J.; Sadarangani, K. Contractive-like mapping principles in ordered metric spaces and application to ordinary differential equations, Fixed Point Theory and Appl., Article ID 916064, doi:10.1155/2010/916064. (2010), pp. 1-14

[11] Ćirić, Lj. B.; V. Lakshmikantham Coupled random fixed point theorems for nonlinear contractions in partially ordered metric spaces, Stoch. Anal. Appl., Volume 27 (6) (2009), pp. 1246-1259

[12] Ćirić, Lj. B.; Mihet, D.; Saadati, R. Monotone generalized contractions in partially ordered probabilistic metric spaces, Topol. Appl., Volume 156 (2009), pp. 2838-2844

[13] Ćirić, L.; Cakić, N.; Rajović, M.; Ume, J. S. Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory and Appl., Article ID 131294, 11 pages, 2008

[14] Connell, E. H. Properties of fixed point spaces, Proc. Amer. Math. Soc., Volume 10 (1959), pp. 974-979

[15] Geraghty, M. A. On contractive mappings, Proc. Amer. Math. Soc., Volume 40 (1973), pp. 604-608

[16] Bhaskar, T. G.; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. TMA, Volume 65 (7) (2006), pp. 1379-1393

[17] Hu, X. Common Coupled fixed point theorems for contractive mappings in fuzzy metric spaces, Fixed Point Theory and Appl., Article ID 363716, doi:10.1155/2011/363716. (2011), pp. 1-14

[18] Jachymski, J. Equivalent conditions for generalized contractions on (ordered) metric spaces, Nonlinear Anal., Volume 74 (2011), pp. 768-774

[19] Janos, L. On mappings contractive in the sense of Kannan, Proc. Amer. Math. Soc., Volume 61(1) (1976), pp. 171-175

[20] Kannan, R. Some results on fixed points , Bull. Cal. Math. Soc., Volume 60 (1968), pp. 71-76

[21] Kannan, R. Some results on fixed points-II, Amer. Math. Monthly, Volume 76 (1969), pp. 405-408

[22] Kikkaw, M.; T. Suzuki Some similarity between contractions and Kannan mappings, Fixed Point Theory and Appl., Article ID 649749. , Volume 2008 (2008), pp. 1-8

[23] Karapinar, E. Coupled fixed point theorems for nonlinear contractions in cone metric spaces, Comput. Math. Appl., Volume 59 (2010), pp. 3656-3668

[24] Lakshmikantham, V.; L. Ciric Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. TMA, Volume 70 (2009), pp. 4341-4349

[25] Nieto, J. J.; Rodriguez-Lopez, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, Volume 22(3) (2005), pp. 223-239

[26] Nieto, J. J.; Lopez, R. R. Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta. Math. Sin., (Engl. Ser.), Volume 23(12) (2007), pp. 2205-2212

[27] Ran, A. C. M.; Reurings, M. C. B. A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., Volume 132(5) (2004), pp. 1435-1443

[28] Ruiz, D. A.; Melado, A. J. A continuation method for weakly Kannan maps, Fixed Point Theory and Appl., Article ID 321594, doi:10.1155/2010/321594. , Volume 2010 (2010), pp. 1-12

[29] Samet, B.; H. Yazidi Coupled fixed point theorems in partially ordered ''-chainable Metric spaces, TJMCS, Volume 1 (3) (2010), pp. 142-151

[30] Shioji, N.; Takahashi, T. Suzuki and W. Contractive mappings, Kannan mappings and metric completeness, Proc. Amer. Math. Soc., Volume 126 (1998), pp. 3117-3124

[31] Enjouji, Y.; Nakanishi, M.; Suzuki, T. A generalization of Kannan's fixed point theorem, Fixed Point Theory and Appl., Article ID 192872, doi:10.1155/2009/192872. , Volume 2009 (2009), pp. 1-10

[32] Subrahmanyam, P. V. Completeness and fixed points, Monatsh. Math., Volume 80 (1975), pp. 325-330

Cité par Sources :