Voir la notice de l'article provenant de la source International Scientific Research Publications
Jain, Shobha 1 ; Jain, Shishir 2 ; Jain, Lal Bahadur 3
@article{JNSA_2012_5_4_a0, author = {Jain, Shobha and Jain, Shishir and Jain, Lal Bahadur}, title = {On {Banach} contraction principle in a cone metric space}, journal = {Journal of nonlinear sciences and its applications}, pages = {252-258}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2012}, doi = {10.22436/jnsa.005.04.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.01/} }
TY - JOUR AU - Jain, Shobha AU - Jain, Shishir AU - Jain, Lal Bahadur TI - On Banach contraction principle in a cone metric space JO - Journal of nonlinear sciences and its applications PY - 2012 SP - 252 EP - 258 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.01/ DO - 10.22436/jnsa.005.04.01 LA - en ID - JNSA_2012_5_4_a0 ER -
%0 Journal Article %A Jain, Shobha %A Jain, Shishir %A Jain, Lal Bahadur %T On Banach contraction principle in a cone metric space %J Journal of nonlinear sciences and its applications %D 2012 %P 252-258 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.01/ %R 10.22436/jnsa.005.04.01 %G en %F JNSA_2012_5_4_a0
Jain, Shobha; Jain, Shishir; Jain, Lal Bahadur. On Banach contraction principle in a cone metric space. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 4, p. 252-258. doi : 10.22436/jnsa.005.04.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.01/
[1] Itrative approximation of fixed points, Springer Verlag, , 2007
[2] A generalization of Banach contraction princple, Proc. American Mathematical Society , Volume 45 (1974), pp. 999-1006
[3] Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., Volume 332 (2007), pp. 1468-1476
[4] Quasi-contraction on a cone metric space, Applied Mathematics Letters, Volume 22 (2009), pp. 728-731
[5] Compatibilty and weak compatibility for four self maps in a cone metric space, Bulletin of Mathematical analysis and application, Volume 1 (2010), pp. 1-18
[6] Weakly compatibile maps in a cone metric space, Rendiconti Del Seminario Matematica, Volume 68 (2010), pp. 115-225
[7] On some boundary value problems, Litov. matem. sbornik , Volume 5 (1965), pp. 69-84
[8] Fixed point principle in generalized metric space, Izvestija AN Tadzh. SSR, fiz.-mat. i geol.-chem. nauki., Volume 10 (1969), pp. 8-19
[9] The Cauchy problem for systems of ordinary differential equations, In , Approximate methods of solving differential equations, Kiev, Naukova Dumka, Volume 1964 (12), pp. 115-134
[10] An approach to studying boundary value problems, Izvestija AN SSSR, ser. math. , Volume 30 (1966), pp. 249-264
[11] Some notes on the paper ''Cone metric spaces and fixed point theorems of contractive mappings'', J. Math. Anal. Appl., Volume 345 (2008), pp. 719-724
[12] A Fixed Point Theorem for a sequence of Maps satisfying a new contractive type contraction in Menger Space, Math Japonica , Volume 35 (1990), pp. 1099-1102
[13] K-metric and K-normed linear spaces , Survey Collect. Math. , Volume 48 (1997), pp. 825-859
Cité par Sources :