On Banach contraction principle in a cone metric space
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 4, p. 252-258.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The object of this paper is to establish a generalized form of Banach contraction principle for a cone metric space which is not necessarily normal. This happens to be a generalization of all different forms of Banach contraction Principle, which have been arrived at in L. G. Huang and X. Zhang [L. G. Huang and X. Zhang, J. Math. Anal. Appl 332 (2007), 1468-1476] and Sh. Rezapour, R. Hamlbarani [Sh. Rezapour, R. Hamlbarani, J. Math. Anal. Appl. 345 (2008) 719-724] and D. Ilic, V. Rakocevic [D. Ilic, V. Rakocevic, Applied Mathematics Letters 22 (2009), 728-731]. It also results that the theorem on quasi contraction of Ćirić [L. J. B. Ćirić, Proc. American Mathematical Society 45 (1974), 999-1006]. for a complete metric space also holds good in a complete cone metric space. All the results presented in this paper are new.
DOI : 10.22436/jnsa.005.04.01
Keywords: Cone metric space, common fixed points.

Jain, Shobha 1 ; Jain, Shishir 2 ; Jain, Lal Bahadur 3

1 Quantum School of Technology, Roorkee (U. K.), India
2 Shri Vaishnav Institute of Technology and Science, Indore (M. P.), India
3 Retd. Principal, Govt. Arts and Commerce College ), Indore (M. P.), India
@article{JNSA_2012_5_4_a0,
     author = {Jain, Shobha and Jain, Shishir and Jain, Lal Bahadur},
     title = {On {Banach} contraction principle in a cone metric space},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {252-258},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2012},
     doi = {10.22436/jnsa.005.04.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.01/}
}
TY  - JOUR
AU  - Jain, Shobha
AU  - Jain, Shishir
AU  - Jain, Lal Bahadur
TI  - On Banach contraction principle in a cone metric space
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 252
EP  - 258
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.01/
DO  - 10.22436/jnsa.005.04.01
LA  - en
ID  - JNSA_2012_5_4_a0
ER  - 
%0 Journal Article
%A Jain, Shobha
%A Jain, Shishir
%A Jain, Lal Bahadur
%T On Banach contraction principle in a cone metric space
%J Journal of nonlinear sciences and its applications
%D 2012
%P 252-258
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.01/
%R 10.22436/jnsa.005.04.01
%G en
%F JNSA_2012_5_4_a0
Jain, Shobha; Jain, Shishir; Jain, Lal Bahadur. On Banach contraction principle in a cone metric space. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 4, p. 252-258. doi : 10.22436/jnsa.005.04.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.04.01/

[1] Berinde, V. Itrative approximation of fixed points, Springer Verlag, , 2007

[2] Ćirić, L. J. B. A generalization of Banach contraction princple, Proc. American Mathematical Society , Volume 45 (1974), pp. 999-1006

[3] Huang, L. G.; X. Zhang Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., Volume 332 (2007), pp. 1468-1476

[4] Ilic, D.; Rakocevic, V. Quasi-contraction on a cone metric space, Applied Mathematics Letters, Volume 22 (2009), pp. 728-731

[5] Jain, Sh.; Jain, Sh.; L. B. Jain Compatibilty and weak compatibility for four self maps in a cone metric space, Bulletin of Mathematical analysis and application, Volume 1 (2010), pp. 1-18

[6] Jain, Sh.; Jain, Sh.; Jain, L. B. Weakly compatibile maps in a cone metric space, Rendiconti Del Seminario Matematica, Volume 68 (2010), pp. 115-225

[7] Kvedaras, B. V.; Kibenko, A. V.; Perov, A. I. On some boundary value problems, Litov. matem. sbornik , Volume 5 (1965), pp. 69-84

[8] Mukhamadiev, E. M.; Stetsenko, V. J. Fixed point principle in generalized metric space, Izvestija AN Tadzh. SSR, fiz.-mat. i geol.-chem. nauki., Volume 10 (1969), pp. 8-19

[9] A. I. Perov The Cauchy problem for systems of ordinary differential equations, In , Approximate methods of solving differential equations, Kiev, Naukova Dumka, Volume 1964 (12), pp. 115-134

[10] Perov, A. I.; Kibenko, A. V. An approach to studying boundary value problems, Izvestija AN SSSR, ser. math. , Volume 30 (1966), pp. 249-264

[11] Rezapour, h.; R. Hamlbarani Some notes on the paper ''Cone metric spaces and fixed point theorems of contractive mappings'', J. Math. Anal. Appl., Volume 345 (2008), pp. 719-724

[12] R. Vasuki A Fixed Point Theorem for a sequence of Maps satisfying a new contractive type contraction in Menger Space, Math Japonica , Volume 35 (1990), pp. 1099-1102

[13] Zabrejko, P. P. K-metric and K-normed linear spaces , Survey Collect. Math. , Volume 48 (1997), pp. 825-859

Cité par Sources :