Voir la notice de l'article provenant de la source International Scientific Research Publications
Choudhury, B. S. 1 ; Kundu, Subhajit 2
@article{JNSA_2012_5_3_a7, author = {Choudhury, B. S. and Kundu, Subhajit}, title = {A viscosity type iteration by weak contraction for approximating solutions of generalized equilibrium problem}, journal = {Journal of nonlinear sciences and its applications}, pages = {243-251}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2012}, doi = {10.22436/jnsa.005.03.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.08/} }
TY - JOUR AU - Choudhury, B. S. AU - Kundu, Subhajit TI - A viscosity type iteration by weak contraction for approximating solutions of generalized equilibrium problem JO - Journal of nonlinear sciences and its applications PY - 2012 SP - 243 EP - 251 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.08/ DO - 10.22436/jnsa.005.03.08 LA - en ID - JNSA_2012_5_3_a7 ER -
%0 Journal Article %A Choudhury, B. S. %A Kundu, Subhajit %T A viscosity type iteration by weak contraction for approximating solutions of generalized equilibrium problem %J Journal of nonlinear sciences and its applications %D 2012 %P 243-251 %V 5 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.08/ %R 10.22436/jnsa.005.03.08 %G en %F JNSA_2012_5_3_a7
Choudhury, B. S.; Kundu, Subhajit. A viscosity type iteration by weak contraction for approximating solutions of generalized equilibrium problem. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 3, p. 243-251. doi : 10.22436/jnsa.005.03.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.08/
[1] Principles of weakly contractive maps in Hilbert spaces , New Results in Operator Theory, Advances and Application (eds. I. Gohberg, Y. Lyubich, , Birkhauser, Basel, 722, 98, 1997
[2] From optimization and variational inequalities to equilibrium problems, Math Student, Volume 63 (1994), pp. 123-145
[3] A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math., Volume 214 (2008), pp. 186-201
[4] Iterative approaches to solving equilibrium problems and fixed point problems of infinitely many nonexpansive mappings, J. Optim. Theory. Appl., Volume 143 (2009), pp. 37-58
[5] An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings , J. Comput. Appl. Math., Volume 223 (2009), pp. 967-974
[6] Approximation of fixed points of weakly contractive non self maps in Banach spaces, J. Math. Anal. Appl., Volume 270 (2002), pp. 189-199
[7] Fixed points of weak contractions in cone metric spaces, Nonlinear Analysis TMA, Volume 72 (2010), pp. 1589-1593
[8] An iterative method for finding common solutions of equilibrium problem and fixed point problems, J. Math. Anal. Appl., Volume 344 (2008), pp. 340-352
[9] Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., Volume 6(1) (2005), pp. 117-136
[10] A generalization of contraction principle in metric spaces, Fixed point Theory Appl., Article ID: 406368 (2008), pp. 1-8
[11] Strong convergence theorems for solving equilibrium problems and fixed point problems of \(\xi\)- strict pseudo contraction mappings by two hybrid projection methods , J. Comput. Appl. Math., Volume 234 (2010), pp. 722-732
[12] A hybrid iterative scheme for equilibrium problems and fixed point problems of asymptotically k-strict pseudo contractions, J. Comput. Appl. Math., Volume 233 (2010), pp. 2013-2026
[13] Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., Volume 194 (1995), pp. 114-125
[14] Viscosity approximation methods for fixed point problems, J. Math. Anal. Appl., Volume 241 (2000), pp. 46-55
[15] Fixed points for (\(\phi,\psi\) )-weak contractions, Appl. Math. Lett., Volume 24 (2000), pp. 1-4
[16] Viscosity approximation methods for generalized equilibrium problems and fixed point problems with application, Nonlinear Analysis TMA., Volume 72 (2010), pp. 99-112
[17] Generalized weak contractions in partially ordered metric spaces, Comp Math Appl, Volume 60 (2010), pp. 1776-1783
[18] Some theorems on weakly contractive maps, Nonlinear Analysis TMA., Volume 47 (2001), pp. 2683-2693
[19] Coincidence points for noncommuting f-weakly contractive mappings, Int. J. Comput. Appl. Math., Volume 2 (2007), pp. 51-57
[20] Strong convergence of Krasnoselskii and Mann's Type sequences for one parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., Volume 305 (2005), pp. 227-239
[21] Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, J. Optim. Theory. Appl., Volume 133 (2007), pp. 359-370
[22] Viscosity approximation methods for equilibrium problem and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., Volume 331 (2007), pp. 506-515
[23] Strong convergence theorem for a generalized equilibrium problem and a nonex- pansive mapping in a Hilbert space, Nonlinear Analysis TMA., Volume 69 (2008), pp. 1025-1033
[24] An iterative scheme for equilibrium problems and fixed point problems of asymptotically k-strict pseudo contractive mappings, Commun. Korean. Math. Soc., Volume 25 (2007), pp. 69-82
[25] On iterative methods for equilibrium problems, Nonlinear Analysis TMA., Volume 70 (2009), pp. 497-509
[26] Fixed point theory for \(\phi\)-weak contractions , Appl. Math. Lett., Volume 22 (2009), pp. 75-78
Cité par Sources :