A viscosity type iteration by weak contraction for approximating solutions of generalized equilibrium problem
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 3, p. 243-251.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Viscosity iterations which include contraction mapping have been widely used to find solutions of equilibrium problems. Here we introduce a modification of the viscosity iteration scheme by replacing the contraction with a weak contraction. Weakly contractive mappings are intermediate to contractive and nonexpansive mappings and are known to have unique fixed points in complete metric spaces. We apply this iteration to the case of a generalized equilibrium problem. The special case where the weak contraction is a contraction has also been discussed.
DOI : 10.22436/jnsa.005.03.08
Classification : 46C05, 47H10, 91B50
Keywords: Generalized Equilibrium problem, Viscosity approximation methods, Nonexpansive mappings, Weak contraction

Choudhury, B. S. 1 ; Kundu, Subhajit 2

1 Faculty of Bengal Engineering and Science University, Shibpur; P. O. - B. Garden, Howrah; Howrah-711103, West Bengal, India
2 Department of Mathematics, Bengal Engineering and Science University, Shibpur; P. O. - B. Garden, Howrah; Howrah - 711103, West Bengal, India
@article{JNSA_2012_5_3_a7,
     author = {Choudhury, B. S. and Kundu, Subhajit},
     title = {A viscosity type iteration by weak contraction  for approximating solutions of generalized equilibrium problem},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {243-251},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2012},
     doi = {10.22436/jnsa.005.03.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.08/}
}
TY  - JOUR
AU  - Choudhury, B. S.
AU  - Kundu, Subhajit
TI  - A viscosity type iteration by weak contraction  for approximating solutions of generalized equilibrium problem
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 243
EP  - 251
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.08/
DO  - 10.22436/jnsa.005.03.08
LA  - en
ID  - JNSA_2012_5_3_a7
ER  - 
%0 Journal Article
%A Choudhury, B. S.
%A Kundu, Subhajit
%T A viscosity type iteration by weak contraction  for approximating solutions of generalized equilibrium problem
%J Journal of nonlinear sciences and its applications
%D 2012
%P 243-251
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.08/
%R 10.22436/jnsa.005.03.08
%G en
%F JNSA_2012_5_3_a7
Choudhury, B. S.; Kundu, Subhajit. A viscosity type iteration by weak contraction  for approximating solutions of generalized equilibrium problem. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 3, p. 243-251. doi : 10.22436/jnsa.005.03.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.08/

[1] Alber, Y. I.; Guerre-Delabriere, S. Principles of weakly contractive maps in Hilbert spaces , New Results in Operator Theory, Advances and Application (eds. I. Gohberg, Y. Lyubich, , Birkhauser, Basel, 722, 98, 1997

[2] Blum, E.; Oettli, W. From optimization and variational inequalities to equilibrium problems, Math Student, Volume 63 (1994), pp. 123-145

[3] Ceng, L. C.; J. C. Yao A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math., Volume 214 (2008), pp. 186-201

[4] Ceng, L. C.; Petrusel, A.; J. C. Yao Iterative approaches to solving equilibrium problems and fixed point problems of infinitely many nonexpansive mappings, J. Optim. Theory. Appl., Volume 143 (2009), pp. 37-58

[5] Ceng, L. C.; Al-Homidan, S.; Ansari, Q. H.; Yao, J. C. An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings , J. Comput. Appl. Math., Volume 223 (2009), pp. 967-974

[6] Chidume, C. E.; Zegeye, H.; Aneke, S. J. Approximation of fixed points of weakly contractive non self maps in Banach spaces, J. Math. Anal. Appl., Volume 270 (2002), pp. 189-199

[7] Choudhury, B. S.; Metiya, N. Fixed points of weak contractions in cone metric spaces, Nonlinear Analysis TMA, Volume 72 (2010), pp. 1589-1593

[8] Colao, V.; Marino, G.; H. K. Xu An iterative method for finding common solutions of equilibrium problem and fixed point problems, J. Math. Anal. Appl., Volume 344 (2008), pp. 340-352

[9] Combettes, P. L.; Hirstoaga, S. A. Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., Volume 6(1) (2005), pp. 117-136

[10] Dutta, P. N.; Choudhury, B. S. A generalization of contraction principle in metric spaces, Fixed point Theory Appl., Article ID: 406368 (2008), pp. 1-8

[11] Jaiboon, C.; Kumam, P. Strong convergence theorems for solving equilibrium problems and fixed point problems of \(\xi\)- strict pseudo contraction mappings by two hybrid projection methods , J. Comput. Appl. Math., Volume 234 (2010), pp. 722-732

[12] Kumam, P.; Petrot, N.; Wangkeeree, R. A hybrid iterative scheme for equilibrium problems and fixed point problems of asymptotically k-strict pseudo contractions, J. Comput. Appl. Math., Volume 233 (2010), pp. 2013-2026

[13] L. S. Liu Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., Volume 194 (1995), pp. 114-125

[14] A. Moudafi Viscosity approximation methods for fixed point problems, J. Math. Anal. Appl., Volume 241 (2000), pp. 46-55

[15] Popescu, O. Fixed points for (\(\phi,\psi\) )-weak contractions, Appl. Math. Lett., Volume 24 (2000), pp. 1-4

[16] Qin, X.; Cho, Y. J.; S. M. Kang Viscosity approximation methods for generalized equilibrium problems and fixed point problems with application, Nonlinear Analysis TMA., Volume 72 (2010), pp. 99-112

[17] Radenovi, S.; Kadelburg, Z. Generalized weak contractions in partially ordered metric spaces, Comp Math Appl, Volume 60 (2010), pp. 1776-1783

[18] Rhoades, B. E. Some theorems on weakly contractive maps, Nonlinear Analysis TMA., Volume 47 (2001), pp. 2683-2693

[19] Song, Y. Coincidence points for noncommuting f-weakly contractive mappings, Int. J. Comput. Appl. Math., Volume 2 (2007), pp. 51-57

[20] Suzuki, T. Strong convergence of Krasnoselskii and Mann's Type sequences for one parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., Volume 305 (2005), pp. 227-239

[21] Tada, A.; W. Takahashi Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, J. Optim. Theory. Appl., Volume 133 (2007), pp. 359-370

[22] Takahashi, S.; W. Takahashi Viscosity approximation methods for equilibrium problem and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., Volume 331 (2007), pp. 506-515

[23] Takahashi, S.; Takahashi, W. Strong convergence theorem for a generalized equilibrium problem and a nonex- pansive mapping in a Hilbert space, Nonlinear Analysis TMA., Volume 69 (2008), pp. 1025-1033

[24] Wang, Z.; Su, Y. An iterative scheme for equilibrium problems and fixed point problems of asymptotically k-strict pseudo contractive mappings, Commun. Korean. Math. Soc., Volume 25 (2007), pp. 69-82

[25] Yao, Y.; Noor, M. A.; Liou, Y. C. On iterative methods for equilibrium problems, Nonlinear Analysis TMA., Volume 70 (2009), pp. 497-509

[26] Zhang, Q.; Song, Y. Fixed point theory for \(\phi\)-weak contractions , Appl. Math. Lett., Volume 22 (2009), pp. 75-78

Cité par Sources :