Controllability results for impulsive differential systems with finite delay
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 3, p. 206-219.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper establishes some sufficient conditions for controllability of impulsive functional differential equations with finite delay in a Banach space. The results are obtained by using the measures of noncompactness and Monch fixed point theorem. Particularly, we do not assume the compactness of the evolution system. Finally, an example is provided to illustrate the theory.
DOI : 10.22436/jnsa.005.03.05
Classification : 93B05, 34A37, 34G20
Keywords: Controllability, Impulsive differential equations, Measures of noncompactness, Semigroup theory, Fixed point.

Selvi, S. 1 ; Arjunan, M. Mallika 2

1 Department of Mathematics, Muthayammal College of Arts & Science, Rasipuram- 637408, Tamil Nadu, India
2 Department of Mathematics, Karunya University, Karunya Nagar, Coimbatore- 641 114, Tamil Nadu, India
@article{JNSA_2012_5_3_a4,
     author = {Selvi, S. and Arjunan, M. Mallika},
     title = {Controllability results for impulsive differential systems with finite delay},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {206-219},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2012},
     doi = {10.22436/jnsa.005.03.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.05/}
}
TY  - JOUR
AU  - Selvi, S.
AU  - Arjunan, M. Mallika
TI  - Controllability results for impulsive differential systems with finite delay
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 206
EP  - 219
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.05/
DO  - 10.22436/jnsa.005.03.05
LA  - en
ID  - JNSA_2012_5_3_a4
ER  - 
%0 Journal Article
%A Selvi, S.
%A Arjunan, M. Mallika
%T Controllability results for impulsive differential systems with finite delay
%J Journal of nonlinear sciences and its applications
%D 2012
%P 206-219
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.05/
%R 10.22436/jnsa.005.03.05
%G en
%F JNSA_2012_5_3_a4
Selvi, S.; Arjunan, M. Mallika. Controllability results for impulsive differential systems with finite delay. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 3, p. 206-219. doi : 10.22436/jnsa.005.03.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.05/

[1] Anguraj, A.; Arjunan, M. Mallika Existence and uniqueness of mild and classical solutions of impulsive evolution equations, Electron J. Differential Equations, Volume 111 (2005), pp. 1-8

[2] Anguraj, A.; Arjunan, M. Mallika Existence results for an impulsive neutral integro-differential equations in Banach spaces, Nonlinear Stud., Volume 16(1) (2009), pp. 33-48

[3] Bainov, D. D.; Simeonov, P. S. Impulsive Differential Equations: Periodic Solutions and Applications, Longman Scientific and Technical Group, England, 1993

[4] Banas, J.; K. Goebel Measure of Noncompactness in Banach Spaces, in: Lecture Notes in Pure and Applied Matyenath, Marcel Dekker, New York, 1980

[5] Benchohra, M.; Henderson, J.; S. K. Ntouyas Existence results for impulsive multivalued semilinear neutral functional inclusions in Banach spaces , J. Math. Anal. Appl., Volume 263 (2001), pp. 763-780

[6] Chen, L.; G. Li Approximate controllability of impulsive differential equations with nonlocal conditions, Int. J. Nonlinear Sci., Volume 10 (2010), pp. 438-446

[7] Fan, Z. Impulsive problems for semilinear differential equations with nonlocal conditions, Nonlinear Anal., Volume 72 (2010), pp. 1104-1109

[8] Fan, Z.; G. Li Existence results for semilinear differential equations with nonlocal and impulsive conditions, J. Funct. Anal., Volume 258 (2010), pp. 1709-1727

[9] Hernandez, E.; Pierri, M.; Goncalves, G. Existence results for an impulsive abstract partial differential equation with state-dependent delay, Comput. Math. Appl., Volume 52 (2006), pp. 411-420

[10] Hernandez, E.; Rabello, M.; Henriaquez, H. Existence of solutions for impulsive partial neutral functional differential equations, J. Math. Anal. Appl., Volume 331 (2007), pp. 1135-1158

[11] Ji, S.; Li, G.; Wang, M. Controllability of impulsive differential systems with nonlocal conditions, Appl.Math. Comput., Volume 217 (2011), pp. 6981-6989

[12] Ji, S.; Wen, S. Nonlocal cauchy problem for Impulsive differential equations in Banach spaces, Int. J. Nonlinear Sci., Volume 10 (2010), pp. 88-95

[13] Kamenskii, M.; Obukhovskii, V.; Zecca, P. Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter, , 2001

[14] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S. Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989

[15] Li, M.; Wang, M.; Zhang, F. Controllability of impulsive functional differential systems in Banach spaces, Chaos, Solitons and Fractals, Volume 29 (2006), pp. 175-181

[16] Monch, H. Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal., Volume 4 (1980), pp. 985-999

[17] Obukhovski, V.; Zecca, P. Controllability for systems governed by semilinear differential inclusions in a Banach space with a noncompact semigroup, Nonlinear Anal., Volume 70 (2009), pp. 3424-3436

[18] Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Newyork, 1983

[19] Radhakrishnan, B.; Balachandran, K. Controllability of impulsive neutral functional evolution integrodifferential systems with infinite delay, Nonlinear Anal., Volume 5 (2011), pp. 655-670

[20] Samoilenko, A. M.; Perestyuk, N. A. Impulsive Differential Equations, World Scientific, Singapore, 1995

[21] Travis, C.; Webb, G. Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc., Volume 200 (1974), pp. 395-418

[22] Webb, G. An abstract semilinear Volterra integrodifferential equations, Proc. Amer. Math. Soc., Volume 69 (1978), pp. 255-260

[23] Ye, R. Existence of solutions for impulsive partial neutral functional differential equation with infinite delay , Nonlinear Anal., Volume 73 (2010), pp. 155-162

Cité par Sources :