Existence results for impulsive differential equations with nonlocal conditions via measures of noncompactness
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 3, p. 195-205.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study the existence of integral solutions for impulsive evolution equations with nonlocal conditions where the linear part is nondensely defined. Some existence results of integral solutions to such problems are obtained under the conditions in respect of the Hausdorff's measure of noncompactness. Example is provided to illustrate the main result.
DOI : 10.22436/jnsa.005.03.04
Classification : 34A37, 34G10, 47D06
Keywords: Impulsive differential equations, nondensely defined, noncompact measures, nonlocal conditions, integral solutions, semigroup theory.

Arjunan, M. Mallika 1 ; Kavitha, V. 2 ; Selvi, S. 3

1 Department of Mathematics, Karunya University, Karunya Nagar, Coimbatore- 641 114, Tamil Nadu, India
2 Department of Mathematics, Karunya University, Karunya Nagar, Coimbatore-641 114, Tamil Nadu, India
3 Department of Mathematics, Muthayammal College of Arts & Science, Rasipuram- 637408, Tamil Nadu, India
@article{JNSA_2012_5_3_a3,
     author = {Arjunan, M. Mallika and Kavitha, V. and Selvi, S.},
     title = {Existence results for impulsive  differential equations with nonlocal conditions  via measures of noncompactness},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {195-205},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2012},
     doi = {10.22436/jnsa.005.03.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.04/}
}
TY  - JOUR
AU  - Arjunan, M. Mallika
AU  - Kavitha, V.
AU  - Selvi, S.
TI  - Existence results for impulsive  differential equations with nonlocal conditions  via measures of noncompactness
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 195
EP  - 205
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.04/
DO  - 10.22436/jnsa.005.03.04
LA  - en
ID  - JNSA_2012_5_3_a3
ER  - 
%0 Journal Article
%A Arjunan, M. Mallika
%A Kavitha, V.
%A Selvi, S.
%T Existence results for impulsive  differential equations with nonlocal conditions  via measures of noncompactness
%J Journal of nonlinear sciences and its applications
%D 2012
%P 195-205
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.04/
%R 10.22436/jnsa.005.03.04
%G en
%F JNSA_2012_5_3_a3
Arjunan, M. Mallika; Kavitha, V.; Selvi, S. Existence results for impulsive  differential equations with nonlocal conditions  via measures of noncompactness. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 3, p. 195-205. doi : 10.22436/jnsa.005.03.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.04/

[1] Anguraj, A.; Arjunan, M. Mallika Existence and uniqueness of mild and classical solutions of impulsive evolution equations, Electronic Journal of Differential Equations, Volume 111 (2005), pp. 1-8

[2] Anguraj, A.; Arjunan, M. Mallika Existence results for an impulsive neutral integro-differential equations in Banach spaces, Nonlinear Studies, Volume 16(1) (2009), pp. 33-48

[3] Akca, H.; Boucherif, A.; Covachev, V. Impulsive functional differential equations with nonlocal conditions, Inter. J. Math. Math. Sci., Volume 29:5 (2002), pp. 251-256

[4] Bainov, D. D.; P. S. Simeonov Impulsive Differential Equations: Periodic Solutions and Applications, Longman Scientific and Technical Group, England, 1993

[5] Banas, J.; K. Goebel Measure of Noncompactness in Banach Spaces, in: Lecture Notes in Pure and Appl. Math., 60, Marcel Dekker, New York, 1980

[6] Benchohra, M.; Ntouyas, S. K. Existence of mild solutions for certain delay semilinear evolution inclusions with nonlocal condition, Dynam. Systems Appl., Volume 9:3 (2000), pp. 405-412

[7] Benchohra, M.; Ntouyas, S. K. Existence of mild solutions of semilinear evolution inclusions with nonlocal conditions, Georgian Math. J., Volume 7 (2000), pp. 221-230

[8] Benchohra, M.; Ntouyas, S. K. Existence and controllability results for nonlinear differential inclusions with nonlocal conditions, J. Appl. Anal., Volume 8 (2002), pp. 31-46

[9] Byszewski, L.; Lakshmikantham, V. Theorems about the existence and uniqueness of solutions of a nonlocal Cauchy problem in Banach spaces, Appl. Anal., Volume 40 (1990), pp. 11-19

[10] Byszewski, L. Uniqueness criterian for solution to abstract nonlocal Cauchy problem, J. Appl. Math. Stochastic Anal., Volume 162 (1991), pp. 49-54

[11] L. Byszewski Existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, Zesz. Nauk. Pol. Rzes. Mat. Fiz., Volume 18 (1993), pp. 109-112

[12] Cardinali, T.; Rubbioni, P. Impulsive semilinear differential inclusion: Topological structure of the solution set and solutions on non-compact domains, Nonlinear Anal., Volume 14 (2008), pp. 73-84

[13] Chang, Y. K.; Anguraj, A.; Arjunan, M. Mallika Existence results for non-densely defined neutral impulsive differential inclusions with nonlocal conditions, J. Appl. Math. Comput., Volume 28 (2008), pp. 79-91

[14] Chang, Y. K.; Anguraj, A.; Arjunan, M. Mallika Existence results for impulsive neutral functional differential equations with infinite delay, Nonlinear Anal.: Hybrid Systems, Volume 2(1) (2008), pp. 209-218

[15] Chang, Y. K.; Kavitha, V.; Arjunan, M. Mallika Existence results for impulsive neutral differential and integrodifferential equations with nonlocal conditions via fractional operators, Nonlinear Anal.: Hybrid Systems, Volume 4(1) (2010), pp. 32-43

[16] Prato, G. Da; E. Sinestrari Differential operators with non-dense domain, Ann. Scuola Norm. Sup. Pisa Sci., Volume 14 (1987), pp. 285-344

[17] Fan, Z.; Dong, Q.; Li, G. Semilinear didderential equations with nonlocal conditions in Banach spaces, International Journal of Nonlinear Science, Volume 2(3) (2006), pp. 131-139

[18] Fan, Z. Existence of nondensely defined evolution equations with nonlocal conditions, Nonlinear Anal., Volume 70 (2009), pp. 3829-3836

[19] Fan, Z. Impulsive problems for semilinear differential equations with nonlocal conditions, Nonlinear Anal., Volume 72(2) (2010), pp. 1104-1109

[20] Kamenskii, M.; Obukhovskii, V.; Zecca, P. Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Ser: Nonlinear Anal. Appl., 7, de Gruyter, Berlin, 2001

[21] Kellerman, H.; Heiber, M. Integrated semigroups, J. Funct. Anal., Volume 84 (1989), pp. 160-180

[22] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S. Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989

[23] Liang, J.; Liu, J. H.; Xiao, Ti-Jun Nonlocal impulsive problems for nonlinear differential equations in Banach spaces, Math. Comput. Model., Volume 49 (2009), pp. 798-804

[24] J. H. Liu Nonlinear impulsive evolution equations, Dynam. Contin. Discrete Impuls. Sys., Volume 6 (1999), pp. 77-85

[25] Monch, H. Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal., Volume 4 (1980), pp. 985-999

[26] Pazy, A. Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, Newyork, 1983

[27] Samoilenko, A. M.; Perestyuk, N. A. Impulsive Differential Equations, World Scientific, Singapore, 1995

[28] Selvaraj, B.; Arjunan, M. Mallika; Kavitha, V. Existence of solutions for impulsive nonlinear differential equations with nonlocal conditions, J. Korean Society for Industrial and Applied Mathematics, Volume 13(3) (2009), pp. 203-215

[29] Xue, X. Existence of solutions for semilinear nonlocal Cauchy problems in Banach spaces, Electronic Journal of Differential Equations, Volume 64 (2005), pp. 1-7

[30] Yosida, K. Functional Analysis, 6th edn., Springer, Berlin, 1980

Cité par Sources :