Voir la notice de l'article provenant de la source International Scientific Research Publications
Anguraj, A. 1 ; Ranjini, M. C. 2
@article{JNSA_2012_5_3_a1, author = {Anguraj, A. and Ranjini, M. C.}, title = {Existence of mild solutions of random impulsive functional differential equations with almost sectorial operators}, journal = {Journal of nonlinear sciences and its applications}, pages = {174-185}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2012}, doi = {10.22436/jnsa.005.03.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.02/} }
TY - JOUR AU - Anguraj, A. AU - Ranjini, M. C. TI - Existence of mild solutions of random impulsive functional differential equations with almost sectorial operators JO - Journal of nonlinear sciences and its applications PY - 2012 SP - 174 EP - 185 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.02/ DO - 10.22436/jnsa.005.03.02 LA - en ID - JNSA_2012_5_3_a1 ER -
%0 Journal Article %A Anguraj, A. %A Ranjini, M. C. %T Existence of mild solutions of random impulsive functional differential equations with almost sectorial operators %J Journal of nonlinear sciences and its applications %D 2012 %P 174-185 %V 5 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.02/ %R 10.22436/jnsa.005.03.02 %G en %F JNSA_2012_5_3_a1
Anguraj, A.; Ranjini, M. C. Existence of mild solutions of random impulsive functional differential equations with almost sectorial operators. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 3, p. 174-185. doi : 10.22436/jnsa.005.03.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.02/
[1] Differential operators with non-dense domain , Ann. Scuola Norm. Sup. Pisa cl. sci. , Volume 4(14) (1987), pp. 285-344
[2] Analytic semigroups and optimal regularity in parabolic problems, Birkhauser Verlag, Basel , 1995
[3] Gebrochene potenzen eines elliptischen operators und parabolische Differentialgleichungen in Raumen holderstetiger Funktionen, Nachr. Akad. Wiss. Gottingen, Math.-Phys. Klasse, Volume 11 (1972), pp. 231-258
[4] A functional calculus for almost sectorial operators and applications to abstract evolution equations, J. Evol. Equ., Volume 1 (2002), pp. 41-68
[5] Semilinear Cauchy problems with almost sectorial operaors, Bull. Pol. Acad. Sci. Math., Volume 55(4) (2007), pp. 333-346
[6] A generation theorem for semigroups of growth order \(\alpha\), Tohoku Math. L., Volume 26 (1974), pp. 39-51
[7] Global existence, uniqueness and continuous dependence for a semilinear initial value problem, J. Math. Anal. Appl., Volume 280(2) (2003), pp. 413-423
[8] The theory of semigroups with weak singularity and its applications to partial differential equations, Tsukuba J. Math., Volume 13(2) (1989), pp. 513-562
[9] Existence of solutions for impulsive neutral functional differential equations with non-local conditions, Nonlinear Analysis Theory Methods and Applications, Volume 70(7) (2009), pp. 2717-2721
[10] Eduardo Hernandez, Existence results for an impulsive partial neutral functional differential equations with state - dependent delay, Applicable Analysis, Volume 86(7) (2007), pp. 861-872
[11] Existence of solutions for impulsive partial neutral functional differential equations, J.Math.Anal.Appl. , Volume 331 (2007), pp. 1135-1158
[12] Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989
[13] Impusive evolution systems: main results and new trends, Dynamics Contin. Diser. Impulsive Sys., Volume 3 (1997), pp. 57-88
[14] Impulsive Differential Equations, World Scientific, Singapore, 1995
[15] Existence and Uniqueness of Neutral Functional Differential Equations with random impulses, International Journal of Nonlinear Science, Volume 8 (2009), pp. 412-418
[16] Existence and Uniqueness of solutions to Random Impulsive Differential Systems, Acta Mathematicae Applicatae Sinica, English series, Volume 22 (2006), pp. 627-632
[17] Oscillation, stability and boundedness of second-order differential systems with random impulses, Computers and Mathematics with Applications, Volume 49(9-10) (2005), pp. 1375-1386
[18] Existence, Uniqueness and stability results of random impulsive semilinear differential systems, Nonlinear Analysis. Hybrid systems, Volume 4 (2010), pp. 475-483
[19] The Existence and Exponential stability of semilinear functional differential equations with random impulses under non-uniqueness, Nonlinear Analysis:Theory, Methods and Applications, Volume 74 (2011), pp. 331-342
[20] On a class of abstract functional differential equations involving almost sectorial operators, Volume 3, 1 (2011), pp. 1-10
Cité par Sources :