Existence of mild solutions of random impulsive functional differential equations with almost sectorial operators
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 3, p. 174-185.

Voir la notice de l'article provenant de la source International Scientific Research Publications

By using the theory of semigroups of growth $\alpha$, we prove the existence and uniqueness of the mild solution for the random impulsive functional differential equations involving almost sectorial operators. An example is given to illustrate the theory.
DOI : 10.22436/jnsa.005.03.02
Classification : 34A37, 35R10, 46C05
Keywords: Impusive differential equations, random impulses, almost sectorial operator, semigroup of growth \(\alpha\), mild solution

Anguraj, A. 1 ; Ranjini, M. C. 2

1 Department of Mathematics, P. S.G. College of Arts and Science, Coimbatore-641 014, Tamil Nadu, India
2 Department of Mathematics, P. S. G. College of Arts and Science, Coimbatore-641 014, Tamil Nadu, India
@article{JNSA_2012_5_3_a1,
     author = {Anguraj, A. and Ranjini, M. C.},
     title = {Existence of mild solutions of random impulsive functional differential equations with almost sectorial operators},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {174-185},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2012},
     doi = {10.22436/jnsa.005.03.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.02/}
}
TY  - JOUR
AU  - Anguraj, A.
AU  - Ranjini, M. C.
TI  - Existence of mild solutions of random impulsive functional differential equations with almost sectorial operators
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 174
EP  - 185
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.02/
DO  - 10.22436/jnsa.005.03.02
LA  - en
ID  - JNSA_2012_5_3_a1
ER  - 
%0 Journal Article
%A Anguraj, A.
%A Ranjini, M. C.
%T Existence of mild solutions of random impulsive functional differential equations with almost sectorial operators
%J Journal of nonlinear sciences and its applications
%D 2012
%P 174-185
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.02/
%R 10.22436/jnsa.005.03.02
%G en
%F JNSA_2012_5_3_a1
Anguraj, A.; Ranjini, M. C. Existence of mild solutions of random impulsive functional differential equations with almost sectorial operators. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 3, p. 174-185. doi : 10.22436/jnsa.005.03.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.02/

[1] Prato, G. Da; Sinestrari, E. Differential operators with non-dense domain , Ann. Scuola Norm. Sup. Pisa cl. sci. , Volume 4(14) (1987), pp. 285-344

[2] Lunardi, A. Analytic semigroups and optimal regularity in parabolic problems, Birkhauser Verlag, Basel , 1995

[3] W. Von Wahl Gebrochene potenzen eines elliptischen operators und parabolische Differentialgleichungen in Raumen holderstetiger Funktionen, Nachr. Akad. Wiss. Gottingen, Math.-Phys. Klasse, Volume 11 (1972), pp. 231-258

[4] Periago, F.; Straub, B. A functional calculus for almost sectorial operators and applications to abstract evolution equations, J. Evol. Equ., Volume 1 (2002), pp. 41-68

[5] Dlotko, T. Semilinear Cauchy problems with almost sectorial operaors, Bull. Pol. Acad. Sci. Math., Volume 55(4) (2007), pp. 333-346

[6] Okazawa, N. A generation theorem for semigroups of growth order \(\alpha\), Tohoku Math. L., Volume 26 (1974), pp. 39-51

[7] Periago, F. Global existence, uniqueness and continuous dependence for a semilinear initial value problem, J. Math. Anal. Appl., Volume 280(2) (2003), pp. 413-423

[8] Taira, K. The theory of semigroups with weak singularity and its applications to partial differential equations, Tsukuba J. Math., Volume 13(2) (1989), pp. 513-562

[9] Anguraj, A.; Karthikeyan, K. Existence of solutions for impulsive neutral functional differential equations with non-local conditions, Nonlinear Analysis Theory Methods and Applications, Volume 70(7) (2009), pp. 2717-2721

[10] Anguraj, A.; Mallika, Arjunan. M. Eduardo Hernandez, Existence results for an impulsive partial neutral functional differential equations with state - dependent delay, Applicable Analysis, Volume 86(7) (2007), pp. 861-872

[11] Hernandez, Eduardo .M.; Marco Rabello; Henriquez, H. R. Existence of solutions for impulsive partial neutral functional differential equations, J.Math.Anal.Appl. , Volume 331 (2007), pp. 1135-1158

[12] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S. Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989

[13] Rogovchenko; Yu, V. Impusive evolution systems: main results and new trends, Dynamics Contin. Diser. Impulsive Sys., Volume 3 (1997), pp. 57-88

[14] Samoilenko, A. M.; N. A. Perestyuk Impulsive Differential Equations, World Scientific, Singapore, 1995

[15] Anguraj, A.; Vinodkumar, A. Existence and Uniqueness of Neutral Functional Differential Equations with random impulses, International Journal of Nonlinear Science, Volume 8 (2009), pp. 412-418

[16] Wu, Shujin; Guo, Xiao-lin; Lin, Song-qing Existence and Uniqueness of solutions to Random Impulsive Differential Systems, Acta Mathematicae Applicatae Sinica, English series, Volume 22 (2006), pp. 627-632

[17] Wu, S. J.; Duan, Y. R. Oscillation, stability and boundedness of second-order differential systems with random impulses, Computers and Mathematics with Applications, Volume 49(9-10) (2005), pp. 1375-1386

[18] Anguraj, A.; Vinodkumar, A. Existence, Uniqueness and stability results of random impulsive semilinear differential systems, Nonlinear Analysis. Hybrid systems, Volume 4 (2010), pp. 475-483

[19] Anguraj, A.; Wu, Shujin; A. Vinodkumar The Existence and Exponential stability of semilinear functional differential equations with random impulses under non-uniqueness, Nonlinear Analysis:Theory, Methods and Applications, Volume 74 (2011), pp. 331-342

[20] Hernandez, E. M. On a class of abstract functional differential equations involving almost sectorial operators, Volume 3, 1 (2011), pp. 1-10

Cité par Sources :