Voir la notice de l'article provenant de la source International Scientific Research Publications
Vinh, Nguyen The 1
@article{JNSA_2012_5_3_a0, author = {Vinh, Nguyen The}, title = {Some further applications of {KKM} theorem in topological semilattices}, journal = {Journal of nonlinear sciences and its applications}, pages = {161-173}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2012}, doi = {10.22436/jnsa.005.03.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.01/} }
TY - JOUR AU - Vinh, Nguyen The TI - Some further applications of KKM theorem in topological semilattices JO - Journal of nonlinear sciences and its applications PY - 2012 SP - 161 EP - 173 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.01/ DO - 10.22436/jnsa.005.03.01 LA - en ID - JNSA_2012_5_3_a0 ER -
%0 Journal Article %A Vinh, Nguyen The %T Some further applications of KKM theorem in topological semilattices %J Journal of nonlinear sciences and its applications %D 2012 %P 161-173 %V 5 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.01/ %R 10.22436/jnsa.005.03.01 %G en %F JNSA_2012_5_3_a0
Vinh, Nguyen The. Some further applications of KKM theorem in topological semilattices. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 3, p. 161-173. doi : 10.22436/jnsa.005.03.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.03.01/
[1] Espaces Topologiques, Fonctions Multivoques, Dunnod, Paris, 1959
[2] From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145
[3] Familles sélectantes , Topol. Methods Nonlinear Anal., Volume 5 (1995), pp. 261-269
[4] A minimax inequality and applications, In, O. Shisha, ed., Inequalities III, Proceedings of the third Symposium on inequalities, Academic Press, New York, 1972
[5] Contractibility and Generalized Convexity, J. Math. Anal. Appl. , Volume 156 (1991), pp. 341-357
[6] Maximal elements and fixed points for binary relations on topological ordered spaces , J. Math. Econom. , Volume 25 (1996), pp. 291-306
[7] General Topology , Van Nostrand, Princeton, NJ, 1955
[8] On quasivariational inclusion problems of type I and related problems, J. Glob. Optim. , Volume 39 (2007), pp. 393-407
[9] Theory of Vector Optimization, In, Lecture Notes in Economics and mathematical systems, Vol. 319, Springer-Verlag, Berlin, 1989
[10] KKM and Nash equilibria type theorems in topological ordered spaces, J. Math. Anal. Appl., Volume 264 (2001), pp. 262-269
[11] The applications of the Fan-Browder fixed point theorem in topological ordered spaces, Appl. Math. Lett. , Volume 19 (2006), pp. 1265-1271
[12] On existence of a solution for the system of generalized vector quasi-equilibrium problems with upper semicontinuous set-valued maps, Inter. J. Math. Math. Sciences , Volume 15 (2005), pp. 2409-2420
[13] Convex functions, monotone operators and differentiablity, Lecture Notes in Mathematics, Springer- Verlag, Vol. 1364, 1989
[14] Fixed point theorems on G-convex spaces and applications, Proc. Nonlinear Func. Anal. Appl. , Volume 1 (1996), pp. 1-19
[15] Ein Fixpunktsatz, Math. Ann. , Volume 111 (1935), pp. 767-776
[16] Matching theorems, fixed point theorems and minimax inequalities in topological ordered spaces, Acta Math. Vietnam. , Volume 30 (2005), pp. 211-224
[17] Some generalized quasi-Ky Fan inequalities in topological ordered spaces, Vietnam J. Math., Volume 36 (2008), pp. 437-449
[18] Systems of generalized quasi-Ky Fan inequalities and Nash equilibrium points with set-valued maps in topological semilattices , PanAmer. Math. J. , Volume 19 (2009), pp. 79-92
[19] KKM Theory and Applications in Nonlinear Analysis, Marcel Dekker Inc., New York, 1999
Cité par Sources :