Voir la notice de l'article provenant de la source International Scientific Research Publications
Popa, Valeriu 1 ; Patriciu, Alina-Mihaela 1
@article{JNSA_2012_5_2_a7, author = {Popa, Valeriu and Patriciu, Alina-Mihaela}, title = {A general fixed point theorem for pairs of weakly compatible mappings in {G--metric} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {151-160}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2012}, doi = {10.22436/jnsa.005.02.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.08/} }
TY - JOUR AU - Popa, Valeriu AU - Patriciu, Alina-Mihaela TI - A general fixed point theorem for pairs of weakly compatible mappings in G--metric spaces JO - Journal of nonlinear sciences and its applications PY - 2012 SP - 151 EP - 160 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.08/ DO - 10.22436/jnsa.005.02.08 LA - en ID - JNSA_2012_5_2_a7 ER -
%0 Journal Article %A Popa, Valeriu %A Patriciu, Alina-Mihaela %T A general fixed point theorem for pairs of weakly compatible mappings in G--metric spaces %J Journal of nonlinear sciences and its applications %D 2012 %P 151-160 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.08/ %R 10.22436/jnsa.005.02.08 %G en %F JNSA_2012_5_2_a7
Popa, Valeriu; Patriciu, Alina-Mihaela. A general fixed point theorem for pairs of weakly compatible mappings in G--metric spaces. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 2, p. 151-160. doi : 10.22436/jnsa.005.02.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.08/
[1] Common fixed point results for noncommuting mappings without continuity in generalized metric spaces, Appl. Math. and Computation, Volume 215 (2009), pp. 262-269
[2] Some periodic point results in generalized metric spaces, Appl. Math. and Computation, Volume 217 (2010), pp. 4094-4099
[3] Well posedness of common fixed point problem for three mappings under strict contractive conditions, Bull. Math. Inform. Physics, Petroleum - Gas Univ. Ploiesti , Volume 61 (2009), pp. 1-10
[4] Well posedness of a fixed point problem using G - function, Sc. St. Res. Univ. Vasile Alecsandri, Bacau. Ser. Math. Inform., Volume 20 (2010), pp. 5-12
[5] Well posedness of fixed point problem for mappings satisfying an implicit relation, Demonstratio Math. , Volume 43, 4 (2010), pp. 923-929
[6] Property (P) in G - metric spaces , Fixed Point Theory and Applications, Article ID 401684, Volume 2010 (2010), pp. 1-12
[7] A generalization of Banach contractions, Proc. Amer. Math. , Volume 45 (1974), pp. 267-273
[8] Sur la porosite de contractions sans point fixe, Comptes Rend. Acad. Sci. Paris , Volume 308 (1989), pp. 51-54
[9] Generalized metric spaces and mappings with fixed point, , Bull. Calcutta Math. Soc. , Volume 84 (1992), pp. 329-336
[10] Generalized metric spaces and topological structures I, Anal. St. Univ. Al. I. Cuza, Iasi Ser. Mat., Volume 46, 1 (2000), pp. 3-24
[11] Common fixed points for noncontinuous, nonself maps on nonnumeric spaces, Far East J. Math. Sci., Volume 4(2) (1996), pp. 195-215
[12] Well posedness and porosity of certain classes of operators, Demonstratio Math. , Volume 38 (2005), pp. 170-176
[13] Expansion mappings theorems in G - metric spaces, Intern. J. Contemp. Math. Sci. , Volume 5 (2010), pp. 2529-2535
[14] Some remarks concerning D - metric spaces, Intern. Conf. Fixed Point. Theory and Applications, Yokohama (2004), pp. 189-198
[15] A new approach to generalized metric spaces, J. Nonlinear Convex Analysis , Volume 7 (2006), pp. 289-297
[16] Some fixed point theorems for mappings on G - complete metric spaces, Fixed Point Theory and Applications, Article ID 189870, Volume 2008 (2008), pp. 1-12
[17] Fixed point theorem on uncomplete G - metric spaces, J. Math. Statistics, Volume 4(4) (2008), pp. 196-201
[18] Fixed point theorems for contractive mappings in complete G - metric spaces, Fixed Point Theory and Applications, Article ID 917175, Volume 2009 (2009), pp. 1-10
[19] Existence of fixed point results in G - metric spaces, Intern. J. Math. Math. Sci., Article ID 283028, Volume 2009 (2009), pp. 1-10
[20] A fixed point theorem of Reich in G - metric spaces, Cuba A. Math. J., Volume 12 (2010), pp. 83-93
[21] Fixed results on a nonsymmetric G - metric spaces, Jordan. J. Math. Statistics, Volume 3(2) (2010), pp. 65-79
[22] Common fixed point for noncommuting mappings , J. Math. And Appl., Volume 188 (1994), pp. 436-440
[23] Common fixed point for four mappings, Bull. Calcutta Math. Soc., Volume 9 (1998), pp. 281-286
[24] Well-posedness in the generalized sense of the fixed point problems for multivalued operators, Taiwanese J.Math., Volume 11, 3 (2007), pp. 903-912
[25] Fixed point theorems for implicit contractive mappings, Stud. Cerc. St. Ser. Mat., Univ. Bacau , Volume 7 (1997), pp. 129-133
[26] Some fixed point theorems for compatible mappings satisfying implicit relations, Demonstratio Math., Volume 32, 1 (1999), pp. 157-163
[27] Well posedness of fixed problem in orbitally complete metric spaces, Stud. Cerc. St. Ser. Math. Univ. Bacau, Suppl., Volume 16 (2006), pp. 209-214
[28] Well posedness of fixed point problem in compact metric spaces, Bull. Math. Inform. Physics Series, Petroleum - Gas Univ. Ploiesti , Volume 60, 1 (2008), pp. 1-4
[29] Well posedness of fixed point problems, Far East J. Math. Sci. Special volume, Part. III (2001), pp. 393-401
[30] Generalized contractions and applications, Cluj University Press, Cluj-Napoca, 2008
[31] Picard operators and well-posedness of fixed point problems, Studia Univ. Babes - Bolyai, Mathematica , Volume 52, 3 (2007), pp. 147-156
[32] Fixed Point Theory, Cluj University Press, Cluj Napoca, 2008
[33] Fixed point theory for contractive mappings satisfying \(\Phi\) - maps in G - metric spaces, Fixed Point Theory and Applications, Article ID 181650, Volume 2010 (2010), pp. 1-9
Cité par Sources :