A general fixed point theorem for pairs of weakly compatible mappings in G--metric spaces
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 2, p. 151-160.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper a general fixed point theorem in G-metric spaces for weakly compatible mappings is proved, theorem which generalize the results from Abbas et. al. [M. Abbas and B. E. Rhoades, Appl. Math. and Computation 215 (2009), 262 - 269] and [M. Abbas, T. Nazir and S. Radanović, Appl. Math. and Computation 217 (2010), 4094 - 4099]. In the last part of this paper it is proved that the fixed point problem for these mappings is well posed.
DOI : 10.22436/jnsa.005.02.08
Classification : 54H25, 47H10
Keywords: G-metric space, weakly compatible mappings, fixed point.

Popa, Valeriu 1 ; Patriciu, Alina-Mihaela 1

1 Department of Mathematics, Informatics and Educational Sciences, Faculty of Sciences ''Vasile Alecsandri'' University of Bacău, 157 Calea Mărăşeşti, Bacău, 600115, Romania
@article{JNSA_2012_5_2_a7,
     author = {Popa, Valeriu and Patriciu, Alina-Mihaela},
     title = {A general fixed point theorem for pairs of weakly compatible mappings in {G--metric} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {151-160},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2012},
     doi = {10.22436/jnsa.005.02.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.08/}
}
TY  - JOUR
AU  - Popa, Valeriu
AU  - Patriciu, Alina-Mihaela
TI  - A general fixed point theorem for pairs of weakly compatible mappings in G--metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 151
EP  - 160
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.08/
DO  - 10.22436/jnsa.005.02.08
LA  - en
ID  - JNSA_2012_5_2_a7
ER  - 
%0 Journal Article
%A Popa, Valeriu
%A Patriciu, Alina-Mihaela
%T A general fixed point theorem for pairs of weakly compatible mappings in G--metric spaces
%J Journal of nonlinear sciences and its applications
%D 2012
%P 151-160
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.08/
%R 10.22436/jnsa.005.02.08
%G en
%F JNSA_2012_5_2_a7
Popa, Valeriu; Patriciu, Alina-Mihaela. A general fixed point theorem for pairs of weakly compatible mappings in G--metric spaces. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 2, p. 151-160. doi : 10.22436/jnsa.005.02.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.08/

[1] Abbas, M.; Rhoades, B. E. Common fixed point results for noncommuting mappings without continuity in generalized metric spaces, Appl. Math. and Computation, Volume 215 (2009), pp. 262-269

[2] Abbas, M.; Nazir, T.; Radanović, S. Some periodic point results in generalized metric spaces, Appl. Math. and Computation, Volume 217 (2010), pp. 4094-4099

[3] Akkouchi, M.; Popa, V. Well posedness of common fixed point problem for three mappings under strict contractive conditions, Bull. Math. Inform. Physics, Petroleum - Gas Univ. Ploiesti , Volume 61 (2009), pp. 1-10

[4] Akkouchi, M.; Popa, V. Well posedness of a fixed point problem using G - function, Sc. St. Res. Univ. Vasile Alecsandri, Bacau. Ser. Math. Inform., Volume 20 (2010), pp. 5-12

[5] Akkouchi, M.; Popa, V. Well posedness of fixed point problem for mappings satisfying an implicit relation, Demonstratio Math. , Volume 43, 4 (2010), pp. 923-929

[6] Chung, R.; Kadian, T.; Rosie, A.; Rhoades, B. E. Property (P) in G - metric spaces , Fixed Point Theory and Applications, Article ID 401684, Volume 2010 (2010), pp. 1-12

[7] L. B. Ciric A generalization of Banach contractions, Proc. Amer. Math. , Volume 45 (1974), pp. 267-273

[8] Myjak, F. S. De Blassi et J. Sur la porosite de contractions sans point fixe, Comptes Rend. Acad. Sci. Paris , Volume 308 (1989), pp. 51-54

[9] Dhage, B. C. Generalized metric spaces and mappings with fixed point, , Bull. Calcutta Math. Soc. , Volume 84 (1992), pp. 329-336

[10] Dhage, B. C. Generalized metric spaces and topological structures I, Anal. St. Univ. Al. I. Cuza, Iasi Ser. Mat., Volume 46, 1 (2000), pp. 3-24

[11] Jungck, G. Common fixed points for noncontinuous, nonself maps on nonnumeric spaces, Far East J. Math. Sci., Volume 4(2) (1996), pp. 195-215

[12] Lahiri, B. K.; P. Das Well posedness and porosity of certain classes of operators, Demonstratio Math. , Volume 38 (2005), pp. 170-176

[13] Manro, S.; Bahtia, S. S.; Kumar, S. Expansion mappings theorems in G - metric spaces, Intern. J. Contemp. Math. Sci. , Volume 5 (2010), pp. 2529-2535

[14] Mustafa, Z.; B. Sims Some remarks concerning D - metric spaces, Intern. Conf. Fixed Point. Theory and Applications, Yokohama (2004), pp. 189-198

[15] Mustafa, Z.; Sims, B. A new approach to generalized metric spaces, J. Nonlinear Convex Analysis , Volume 7 (2006), pp. 289-297

[16] Mustafa, Z.; Obiedat, H.; Awadeh, F. Some fixed point theorems for mappings on G - complete metric spaces, Fixed Point Theory and Applications, Article ID 189870, Volume 2008 (2008), pp. 1-12

[17] Mustafa, Z.; Shatanawi, W.; Bataineh, M. Fixed point theorem on uncomplete G - metric spaces, J. Math. Statistics, Volume 4(4) (2008), pp. 196-201

[18] Mustafa, Z.; Sims, B. Fixed point theorems for contractive mappings in complete G - metric spaces, Fixed Point Theory and Applications, Article ID 917175, Volume 2009 (2009), pp. 1-10

[19] Mustafa, Z.; Shatanawi, W. S.; Bataineh, M. Existence of fixed point results in G - metric spaces, Intern. J. Math. Math. Sci., Article ID 283028, Volume 2009 (2009), pp. 1-10

[20] Z. Mustafa and H. Obiedat A fixed point theorem of Reich in G - metric spaces, Cuba A. Math. J., Volume 12 (2010), pp. 83-93

[21] Obiedat, H.; Mustafa, Z. Fixed results on a nonsymmetric G - metric spaces, Jordan. J. Math. Statistics, Volume 3(2) (2010), pp. 65-79

[22] Pant, R. P. Common fixed point for noncommuting mappings , J. Math. And Appl., Volume 188 (1994), pp. 436-440

[23] Pant, R. P. Common fixed point for four mappings, Bull. Calcutta Math. Soc., Volume 9 (1998), pp. 281-286

[24] Petrusel, A.; Rus, I. A.; Yao, J. C. Well-posedness in the generalized sense of the fixed point problems for multivalued operators, Taiwanese J.Math., Volume 11, 3 (2007), pp. 903-912

[25] V. Popa Fixed point theorems for implicit contractive mappings, Stud. Cerc. St. Ser. Mat., Univ. Bacau , Volume 7 (1997), pp. 129-133

[26] Popa, V. Some fixed point theorems for compatible mappings satisfying implicit relations, Demonstratio Math., Volume 32, 1 (1999), pp. 157-163

[27] Popa, V. Well posedness of fixed problem in orbitally complete metric spaces, Stud. Cerc. St. Ser. Math. Univ. Bacau, Suppl., Volume 16 (2006), pp. 209-214

[28] Popa, V. Well posedness of fixed point problem in compact metric spaces, Bull. Math. Inform. Physics Series, Petroleum - Gas Univ. Ploiesti , Volume 60, 1 (2008), pp. 1-4

[29] Reich, S.; A. J. Zaslavski Well posedness of fixed point problems, Far East J. Math. Sci. Special volume, Part. III (2001), pp. 393-401

[30] Rus, I. A. Generalized contractions and applications, Cluj University Press, Cluj-Napoca, 2008

[31] Rus, I. A. Picard operators and well-posedness of fixed point problems, Studia Univ. Babes - Bolyai, Mathematica , Volume 52, 3 (2007), pp. 147-156

[32] Rus, I. A.; Petrusel, A.; Petrusel, G. Fixed Point Theory, Cluj University Press, Cluj Napoca, 2008

[33] W. Shatanawi Fixed point theory for contractive mappings satisfying \(\Phi\) - maps in G - metric spaces, Fixed Point Theory and Applications, Article ID 181650, Volume 2010 (2010), pp. 1-9

Cité par Sources :