Existence of Solutions of Multi-Point BVPs for Impulsive Functional Differential Equations with Nonlinear Boundary Conditions
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 2, p. 133-150.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Two classes of multi-point BVPs for first order impulsive functional differential equations with nonlinear boundary conditions are studied. Sufficient conditions for the existence of at least one solution to these BVPs are established, respectively. Our results generalize and improve the known ones. Some examples are presented to illustrate the main results.
DOI : 10.22436/jnsa.005.02.07
Classification : 34B37, 65Q20, 65L05, 92D25
Keywords: Nonlinear multi-point boundary value problem, first order impulsive functional differential equation, fixed-point theorem, growth condition.

Liu, Yuji 1

1 Department of Mathematics, Guangdong University of Business Studies, Guangzhou, P. R. China
@article{JNSA_2012_5_2_a6,
     author = {Liu, Yuji},
     title = {Existence of {Solutions} of {Multi-Point} {BVPs} for {Impulsive} {Functional} {Differential} {Equations} with {Nonlinear} {Boundary} {Conditions}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {133-150},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2012},
     doi = {10.22436/jnsa.005.02.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.07/}
}
TY  - JOUR
AU  - Liu, Yuji
TI  - Existence of Solutions of Multi-Point BVPs for Impulsive Functional Differential Equations with Nonlinear Boundary Conditions
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 133
EP  - 150
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.07/
DO  - 10.22436/jnsa.005.02.07
LA  - en
ID  - JNSA_2012_5_2_a6
ER  - 
%0 Journal Article
%A Liu, Yuji
%T Existence of Solutions of Multi-Point BVPs for Impulsive Functional Differential Equations with Nonlinear Boundary Conditions
%J Journal of nonlinear sciences and its applications
%D 2012
%P 133-150
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.07/
%R 10.22436/jnsa.005.02.07
%G en
%F JNSA_2012_5_2_a6
Liu, Yuji. Existence of Solutions of Multi-Point BVPs for Impulsive Functional Differential Equations with Nonlinear Boundary Conditions. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 2, p. 133-150. doi : 10.22436/jnsa.005.02.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.07/

[1] Cabada, A. The monotone method for first order problems with linear and nonlinear boundary conditions, Appl. Math. Comput. , Volume 63 (1994), pp. 163-186

[2] Franco, D.; Nieto, J. J. First order impulsive ordinary differential equations with anti-periodic and nonlinear boundary value conditions, Nonl. Anal. , Volume 42 (2000), pp. 163-173

[3] Franco, D.; Nieto, J. J. A new maximum principle for impulsive first order problems, Internat. J. Theoret. Phys., Volume 37 (1998), pp. 1607-1616

[4] Hakl, R.; Lomtatidze, A.; Puza, B. On a boundary value problem for first order scalar functional differential equations, Nonl. Anal. , Volume 53 (2003), pp. 391-405

[5] He, Z.; Yu, J. Periodic boundary value problems for first order impulsive ordinary differential equations, J. Math. Anal. Appl. , Volume 272 (2002), pp. 67-78

[6] Jiang, D.; Nieto, J. J.; Zuo, W. On monotone method for first order and second order periodic boundary value problems and periodic solutions of functional differential equations, J. Math. Anal. Appl., Volume 289 (2004), pp. 691-699

[7] Ladde, G. S.; Lakshmikantham, V.; Vatsala, A. S. Monotone iterative techniques for nonlinear differential equations, Pitman Advanced Publishing Program, , 1985

[8] Li, X.; Lin, X.; Jiang, D.; Zhang, X. Existence and multiplicity of positive periodic solutions to functional differential equations with impulse effects, Nonl. Anal., Volume 62 (2005), pp. 683-701

[9] X. Liu Nonlinear boundary value problems for first order impulsive integra-differential equations, Appl. Anal. , Volume 36 (1990), pp. 119-130

[10] Nieto, J. J.; Alvarez-Noriega, N. Periodic boundary value problems for nonlinear first order ordinary differential equations, Acta Math. Hungar, Volume 71 (1996), pp. 49-58

[11] Nieto, J. J.; Rodriguez-Lopez, R. Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations, J. Math. Anal. Appl. , Volume 318 (2006), pp. 593-610

[12] Pierson-Gorez, C. Impulsive differential equations of first order with periodic boundary conditions, Diff. Equs. Dyn. Systems, Volume 11 (1993), pp. 185-196

[13] Cabada, A. The method of lower and upper solutions for second, third, fourth, and higher order boundary value problems, J. Math. Anal. Appl. , Volume 185 (1994), pp. 302-320

[14] Cabada, A.; Nieto, J. J.; Franco, D.; Trofimchuk, S. I. A generalization of the monotone method for second order periodic boundary value problems with impulses at fixed points, Dynamics Contin. Discrete Impuls. System, Volume 7 (2000), pp. 145-158

[15] Vatsala, A. S.; Sun, Y. Periodic boundary value problems of impulsive differential equations, Appl. Anal. , Volume 44 (1992), pp. 145-158

[16] Franco, D.; Pouso, R. L. Nonresonance conditions and extremal solutions for first order impulsive problems under weak assumptions, ANZIAM J. , Volume 44 (2003), pp. 393-407

[17] Jankowski, T. Existence of solutions of boundary value problems for differential equations with delayed arguments, J. Comput. Appl. Math. , Volume 156 (2003), pp. 239-252

[18] Franco, D.; Nieto, J. J.; O'Regan, D. Existence of solutions for first order ordinary differential equations with nonlinear boundary conditions, Appl. Math. Letters, Volume 153 (2004), pp. 793-802

[19] Jankowski, T. Existence of solutions of differential equations with nonlinear multi-point boundary conditions, Comput. Math. Appl. , Volume 47 (2004), pp. 1095-1103

[20] Nieto, J. J. Impulsive resonance periodic problems of first order, Appl. Math. Letters, Volume 15 (2002), pp. 489-493

[21] J. J. Nieto Periodic boundary value problems for first order impulsive ordinary differential equations, Nonl. Anal. , Volume 51 (2002), pp. 1223-1232

[22] Franco, D.; J. J. Nieto Maximum principles for periodic impulsive first order problems, J. Comput. Appl. Math. , Volume 88 (1998), pp. 144-159

[23] Liu, Y. Further results on periodic boundary value problems for nonlinear first order impulsive functional differential equations, J. Math. Anal. Appl. , Volume 327 (2007), pp. 435-452

[24] Liu, Y.; Ge, W. Stability theorems and existence results for periodic solutions of nonlinear impulsive delay differential equations with variable coefficients , Nonl. Anal. , Volume 57 (2004), pp. 363-399

[25] Kong, L.; Sun, J. Nonlinear boundary value problem of first order impulsive functional differential equations, J. Math. Anal. Appl. , Volume 318 (2006), pp. 726-741

[26] Liz, E. Existence and approximation of solutions for impulsive first order problems with nonlinear boundary conditions, Nonl. Anal., Volume 25 (1995), pp. 1191-1198

[27] Yang, X.; J. Shen Nonlinear boundary value problems for first order impulsive functional differential equations, Appl. Math. Comput. , Volume 189 (2007), pp. 1943-1952

[28] Smart, D. R. Fixed point theorems, Cambridge University Press, Cambridge, 1980

[29] Tang, S.; Chen, L. Global attractivity in a ''food-limited'' population model with impulsive effects, J. Math. Anal. Appl. , Volume 292 (2004), pp. 211-221

[30] Nieto, J. J. Basic theory for nonresonance impulsive periodic problems of first order, J. Math. Anal. Appl. , Volume 205 (1997), pp. 423-433

[31] Luo, Z.; Z. Jing Periodic boundary value problem for first-order impulsive functional differential equations, Comput. Math. Appl. , Volume 55 (2008), pp. 2094-2107

[32] Gaines, R. E.; Mawhin, J. L. Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Math., 568, Springer, Berlin, 1977

[33] Jankowski, T. Ordinary differential equations with nonlinear boundary conditions of anti-periodic type, Comput. Math. Appl., Volume 47 (2004), pp. 1419-1428

[34] Nieto, J. J. Differential inequalities for functional perturbations of first order ordinary differential equations, Appl. Math. Letters, Volume 15 (2002), pp. 173-179

Cité par Sources :