Fixed points for asymptotic contractions of integral Meir-Keeler type
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 2, p. 126-132.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we introduce the notion of asymptotic contraction of integral Meir-Keeler type on a metric space and we prove a theorem which ensures existence and uniqueness of fixed points for such contractions. This result generalizes some recent results in the literature.
DOI : 10.22436/jnsa.005.02.06
Classification : 47H10, 54H25
Keywords: Fixed points, Asymptotic contractions of integral type, Contractions of Meir-Keeler type.

Canzoneri, Elisa 1 ; Vetro, Pasquale 2

1 Dipartimento di Matematica e Informatica, Universita degli Studi di Palermo, Via Archirafi, 34--90123, Palermo, Italy
2 Dipartimento di Matematica e Informatica, Universita degli Studi di Palermo, Via Archirafi, 34 - 90123, Palermo, Italy
@article{JNSA_2012_5_2_a5,
     author = {Canzoneri, Elisa and Vetro, Pasquale},
     title = {Fixed points for asymptotic contractions of integral {Meir-Keeler} type},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {126-132},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2012},
     doi = {10.22436/jnsa.005.02.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.06/}
}
TY  - JOUR
AU  - Canzoneri, Elisa
AU  - Vetro, Pasquale
TI  - Fixed points for asymptotic contractions of integral Meir-Keeler type
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 126
EP  - 132
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.06/
DO  - 10.22436/jnsa.005.02.06
LA  - en
ID  - JNSA_2012_5_2_a5
ER  - 
%0 Journal Article
%A Canzoneri, Elisa
%A Vetro, Pasquale
%T Fixed points for asymptotic contractions of integral Meir-Keeler type
%J Journal of nonlinear sciences and its applications
%D 2012
%P 126-132
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.06/
%R 10.22436/jnsa.005.02.06
%G en
%F JNSA_2012_5_2_a5
Canzoneri, Elisa; Vetro, Pasquale. Fixed points for asymptotic contractions of integral Meir-Keeler type. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 2, p. 126-132. doi : 10.22436/jnsa.005.02.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.06/

[1] Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. , Volume 3 (1922), pp. 133-181

[2] Branciari, A. A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. , Volume 29 (2002), pp. 531-536

[3] Goebel, K.; Kirk, W. A. Topics in metric fixed-point theory , Cambridge Univ. Press, Cambridge, 1990

[4] Kirk, W. A.; Kang, B. G. A fixed point theorem revisited , J. Korean Math. Soc. , Volume 34 (1997), pp. 285-291

[5] Kirk, W. A.; Sims, B. Handbook of metric fixed point theory, Kluwer Academic Publishers, Dordrecht, 2001

[6] Kirk, W. A. Fixed points of asymptotic contractions, J. Math. Anal. Appl. , Volume 277 (2003), pp. 645-650

[7] Meir, A.; Keeler, E. A theorem on contraction mappings, J. Math. Anal. Appl. , Volume 28 (1969), pp. 326-329

[8] T. Suzuki Meir-Keeler contractions of integral type are still Meir-Keeler contractions, Int. J. Math. Math. Sci., Article ID 39281, Volume 2007 (2007), pp. 1-6

[9] T. Suzuki Several fixed point theorems in complete metric spaces , Yokohama Math. J. , Volume 44 (1997), pp. 61-72

[10] T. Suzuki Several fixed point theorems concerning-distance, Fixed Point Theory Appl. , Volume 2004 (2004), pp. 195-209

[11] Suzuki, T. Fixed-point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces, Nonlinear Anal. , Volume 64 (2006), pp. 971-978

Cité par Sources :