$\Psi$-asymptotic stability of non-linear matrix Lyapunov systems
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 2, p. 115-125.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, first we convert the non-linear matrix Lyapunov system into a Kronecker product matrix system with the help of Kronecker product of matrices. Then, we obtain sufficient conditions for $\Psi$-asymptotic stability and $\Psi$-uniform stability of the trivial solutions of the corresponding Kronecker product system.
DOI : 10.22436/jnsa.005.02.05
Classification : 34D05, 49K15, 34C11
Keywords: Matrix Lyapunov system, Kronecker product, Fundamental matrix, \(\Psi\)-asymptotic stability, \(\Psi\)-(uniform) stability.

Murty, M. S. N. 1 ; Kumar, G. Suresh 2

1 Department of Applied Mathematics, Acharya Nagarjuna University-Nuzvid Campus, Nuzvid-521201, Andhra Pradesh, India
2 Department of Mathematics, Koneru Lakshmaiah University, Vaddeswaram, Guntur, Andra Prdesh, India
@article{JNSA_2012_5_2_a4,
     author = {Murty, M. S. N. and Kumar, G. Suresh},
     title = {\(\Psi\)-asymptotic stability of non-linear matrix {Lyapunov} systems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {115-125},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2012},
     doi = {10.22436/jnsa.005.02.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.05/}
}
TY  - JOUR
AU  - Murty, M. S. N.
AU  - Kumar, G. Suresh
TI  - \(\Psi\)-asymptotic stability of non-linear matrix Lyapunov systems
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 115
EP  - 125
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.05/
DO  - 10.22436/jnsa.005.02.05
LA  - en
ID  - JNSA_2012_5_2_a4
ER  - 
%0 Journal Article
%A Murty, M. S. N.
%A Kumar, G. Suresh
%T \(\Psi\)-asymptotic stability of non-linear matrix Lyapunov systems
%J Journal of nonlinear sciences and its applications
%D 2012
%P 115-125
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.05/
%R 10.22436/jnsa.005.02.05
%G en
%F JNSA_2012_5_2_a4
Murty, M. S. N.; Kumar, G. Suresh. \(\Psi\)-asymptotic stability of non-linear matrix Lyapunov systems. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 2, p. 115-125. doi : 10.22436/jnsa.005.02.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.05/

[1] Akinyele, O. On partial stability and boundedness of degree k, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., Volume 65 (1978), pp. 259-264

[2] Constantin, A. Asymptotic properties of solutions of differential equations, Analele Universităţii din Timişoara, Seria Ştiin ţe Matematice (1992), pp. 183-225

[3] Diamandescu, A. On the \(\Psi\)- stability of Nonlinear Volterra Integro-differential System, Electronic Journal of Differential Equations, Volume 2005 (56) (2005), pp. 1-14

[4] Diamandescu, A. On the \(\Psi\)- asymptotic stability of Nonlinear Volterra Integro-differential System, Bull. Math. Sc. Math.Roumanie, Tome., Volume 46(94) (1-2) (2003), pp. 39-60

[5] Graham, A. Kronecker Products and Matrix Calculus: with applications, Ellis Horwood Series in Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1981

[6] Morchalo, J. On \(\Psi-L_p\)-stability of nonlinear systems of differential equations, Analele Ştiinţifice ale Universităţii ''Al. I. Cuza'' Iaşi, Tomul XXXVI, s. I - a, Matematicăf., Volume 4 (1990), pp. 353-360

[7] Murty, M. S. N.; Kumar, G. Suresh On \(\Psi\)-Boundedness and \(\Psi\)-Stability of Matrix Lyapunov Systems, Journal of Applied Mathematics and Computing, Springer, Volume 26 (2008), pp. 67-84

[8] Murty, [8] M. S. N.; Kumar, G. S.; Lakshmi, P. N.; Anjaneyulu, D. On \(\Psi\)-instability of Non-linear Matrix Lyapunov Systems, , Demonstrtio Mathematica, Volume 42 (4) (2009), pp. 731-743

Cité par Sources :